Mostrar el registro sencillo del ítem
dc.contributor.author
Ruiz, Juan Jose
dc.contributor.author
Pulido, Manuel Arturo
dc.date.available
2017-05-09T20:47:15Z
dc.date.issued
2015-05
dc.identifier.citation
Ruiz, Juan Jose; Pulido, Manuel Arturo; Parameter estimation using ensemble based data assimilation in the presence of model error; American Meteorological Society; Monthly Energy Review; 143; 5-2015; 1568-1582
dc.identifier.issn
0027-0644
dc.identifier.uri
http://hdl.handle.net/11336/16185
dc.description.abstract
This work explores the potential of online parameter estimation as a technique for model error treatment under an imperfect model scenario, in an ensemble-based data assimilation system, using a simple atmospheric general circulation model, and an observing system simulation experiment (OSSE) approach. Model error is introduced in the imperfect model scenario by changing the value of the parameters associated with different schemes. The parameters of the moist convection scheme are the only ones to be estimated in the data assimilation system. In this work, parameter estimation is compared and combined with techniques that account for the lack of ensemble spread and for the systematic model error. The OSSEs show that when parameter estimation is combined with model error treatment techniques, multiplicative and additive inflation or a bias correction technique, parameter estimation produces a further improvement of analysis quality and medium-range forecast skill with respect to the OSSEs with model error treatment techniques without parameter estimation. The improvement produced by parameter estimation is mainly a consequence of the optimization of the parameter values. The estimated parameters do not converge to the value used to generate the observations in the imperfect model scenario; however, the analysis error is reduced and the forecast skill is improved.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Meteorological Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Parameter Estimation
dc.subject
Model Errors
dc.subject
Bias
dc.subject
Kalman Filter
dc.subject
Numerical Weather Prediction/Forecasting
dc.subject
Data Assimilation
dc.subject
Optimization
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Parameter estimation using ensemble based data assimilation in the presence of model error
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-02T18:02:40Z
dc.identifier.eissn
1520-0493
dc.journal.volume
143
dc.journal.pagination
1568-1582
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Boston
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina. Advanced Institute for Computational Science ; Japón
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnologica; Argentina. Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos; Argentina
dc.journal.title
Monthly Energy Review
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/pdf/10.1175/MWR-D-14-00017.1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1175/MWR-D-14-00017.1
Archivos asociados