Mostrar el registro sencillo del ítem
dc.contributor.author
Tang, Yizhe
dc.contributor.author
Bringa, Eduardo Marcial
dc.contributor.author
Remington, Bruce A.
dc.contributor.author
Meyers, Marc A.
dc.date.available
2017-05-09T20:11:01Z
dc.date.issued
2010-12-02
dc.identifier.citation
Tang, Yizhe; Bringa, Eduardo Marcial; Remington, Bruce A.; Meyers, Marc A.; Growth and collapse of nanovoids in tantalum monocrystals; Elsevier; Acta Materialia; 59; 4; 2-12-2010; 1354-1372
dc.identifier.issn
1359-6454
dc.identifier.uri
http://hdl.handle.net/11336/16175
dc.description.abstract
The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same h111i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h111i. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 108 s 1 . A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (108 s 1 ) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s1 for 108 s 1 and 1020 m s1 for 109 s 1 . 2
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Molecular Dynamics
dc.subject
Shear Loops
dc.subject
Void Growth
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Growth and collapse of nanovoids in tantalum monocrystals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-07T13:40:41Z
dc.journal.volume
59
dc.journal.number
4
dc.journal.pagination
1354-1372
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
dc.description.fil
Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos
dc.journal.title
Acta Materialia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.actamat.2010.11.001
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410007421
Archivos asociados