Mostrar el registro sencillo del ítem

dc.contributor.author
Apipattanavis, Somkiat  
dc.contributor.author
Bert, Federico Esteban  
dc.contributor.author
Podestá, Guillermo  
dc.contributor.author
Rajagopalan, Balaji  
dc.date.available
2017-05-09T19:30:57Z  
dc.date.issued
2010-02  
dc.identifier.citation
Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174  
dc.identifier.issn
0168-1923  
dc.identifier.uri
http://hdl.handle.net/11336/16167  
dc.description.abstract
Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Climate Impacts  
dc.subject
Seasonal Forecasting  
dc.subject
Risk Assessment  
dc.subject
Statistical Downscaling  
dc.subject
Maize  
dc.subject
Argentina  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Linking weather generators and crop models for assessment of climate forecast outcomes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-25T13:26:33Z  
dc.journal.volume
150  
dc.journal.number
2  
dc.journal.pagination
166-174  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos  
dc.description.fil
Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Podestá, Guillermo. University of Miami; Estados Unidos  
dc.description.fil
Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos  
dc.journal.title
Agricultural And Forest Meteorology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agrformet.2009.09.012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287