Mostrar el registro sencillo del ítem
dc.contributor.author
Apipattanavis, Somkiat
dc.contributor.author
Bert, Federico Esteban
dc.contributor.author
Podestá, Guillermo
dc.contributor.author
Rajagopalan, Balaji
dc.date.available
2017-05-09T19:30:57Z
dc.date.issued
2010-02
dc.identifier.citation
Apipattanavis, Somkiat; Bert, Federico Esteban; Podestá, Guillermo; Rajagopalan, Balaji; Linking weather generators and crop models for assessment of climate forecast outcomes; Elsevier Science; Agricultural And Forest Meteorology; 150; 2; 2-2010; 166-174
dc.identifier.issn
0168-1923
dc.identifier.uri
http://hdl.handle.net/11336/16167
dc.description.abstract
Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator (combining parametric and nonparametric components) with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions (Pergamino and Pilar) of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino (a climatically optimal location) but modified considerably economic expectations (and thus production risk) in Pilar (a more marginal location).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Climate Impacts
dc.subject
Seasonal Forecasting
dc.subject
Risk Assessment
dc.subject
Statistical Downscaling
dc.subject
Maize
dc.subject
Argentina
dc.subject.classification
Investigación Climatológica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Linking weather generators and crop models for assessment of climate forecast outcomes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-25T13:26:33Z
dc.journal.volume
150
dc.journal.number
2
dc.journal.pagination
166-174
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Apipattanavis, Somkiat. State University Of Colorado Boulder; Estados Unidos
dc.description.fil
Fil: Bert, Federico Esteban. Universidad de Buenos Aires. Facultad de Agronomia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Podestá, Guillermo. University of Miami; Estados Unidos
dc.description.fil
Fil: Rajagopalan, Balaji. State University Of Colorado Boulder; Estados Unidos
dc.journal.title
Agricultural And Forest Meteorology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agrformet.2009.09.012
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168192309002287
Archivos asociados