Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A software tool for discovery of gene regulatory networks: Analysis of Alzheimer disease data

Dussaut, Julieta SolIcon ; Gallo, Cristiann Andrés; Cravero, FiorellaIcon ; Martínez, María Jimena; Carballido, Jessica AndreaIcon ; Ponzoni, IgnacioIcon
Tipo del evento: Congreso
Nombre del evento: Jornadas Argentinas de Informática JAIIO47
Fecha del evento: 03/09/2018
Institución Organizadora: Sociedad Argentina de Informática;
Título del Libro: Anales de ASAI 2018 - 47 JAIIO
Editorial: Sociedad Argentina de Informática e Investigación Operativa
ISSN: 2451-7585
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

A gene regulatory network (GRN) is a collection of molecular regulatorsthat interact with each other to govern the majority of the molecular processes.These networks play a central role in in every process of life, therefore, assembling these networks is rather significant. Since most of the GRN are hard to be mapped with accuracy by a mathematical model, the approaches that are called model-free have an advantage in modeling the complexities of dynamic molecular networks.In particular, a rule-based approach, which is a highly abstract model-free approach, offers several advantages performing data-driven analysis. One of these advantages is that it requires the least amount of data, another one is that its simplicity allows the inference of large size models with a higher speed of analysis. However, the resulting relational structure of the network is incomplete, for an effective biological analysis. This situation has driven us to explore the hybridization with other approaches, such as biclustering techniques. This applied technique finds new relations between the nodes of the existent GRN. In this abstract we present a new software, called GeRNeT that integrates the algorithms of GRNCOP2 and BiHEA along a set of tools for interactive visualization, statistical analysis and ontological enrichment of the resulting GRNs that it was published in Dussaut et al. [Dussaut, J.S., Gallo, C.A., Cravero, F., Martínez, M.J., Carballido, J.A., Ponzoni, I. GeRNet:a gene regulatory network tool. BioSystems, 162, pp. 1-11 (2017)]. In this regard, results associated with Alzheimer disease datasets are presented that show the usefulness of integrating both bioinformatics tools.
Palabras clave: Gene Regulatory Networks , Machine Learning , Bioinformatics , Biclustering , Gene Expression Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 313.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/161371
URL: https://47jaiio.sadio.org.ar/sites/default/files/ASAI-13.pdf
URL: https://47jaiio.sadio.org.ar/cai
Colecciones
Eventos(PLAPIQUI)
Eventos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
A software tool for discovery of gene regulatory networks: Analysis of Alzheimer disease data; Jornadas Argentinas de Informática JAIIO47; CABA; Argentina; 2018; 91-91
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES