Artículo
Extra Invariance of group actions
Fecha de publicación:
28/07/2021
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
e-ISSN:
1559-002X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given discrete groups Γ ⊂ Δ we characterize (Γ , σ) -invariant spaces that are also invariant under Δ. This will be done in terms of subspaces that we define using an appropriate Zak transform and a particular partition of the underlying group. On the way, we obtain a new characterization of principal (Γ , σ) -invariant spaces in terms of the Zak transform of its generator. This result is in the spirit of the well-known characterization of shift-invariant spaces in terms of the Fourier transform. As a consequence of our results, we give a solution for the problem of finding the (Γ , σ) -invariant space nearest—in the sense of least squares—to a given set of data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cabrelli, Carlos; Mosquera, Carolina Alejandra; Paternostro, Victoria; Extra Invariance of group actions; Springer; The Journal Of Geometric Analysis; 31; 12; 28-7-2021; 11878-11898
Compartir
Altmétricas