Mostrar el registro sencillo del ítem

dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2022-07-01T10:06:41Z  
dc.date.issued
2021-11  
dc.identifier.citation
Wolanski, Noemi Irene; A free boundary problem in Orlicz spaces related to mean curvature; Elsevier; Journal Of Nonlinear Analysis; 212; 11-2021; 1-21  
dc.identifier.issn
0362-546X  
dc.identifier.uri
http://hdl.handle.net/11336/161016  
dc.description.abstract
In this paper we address a one phase minimization problem for a functional that includes the perimeter of the positivity set. It also includes three terms, the first one is ∫fu and the second ∫u>0h where f and h are bounded functions. The third term is ∫G(|∇u|) where G is a smooth convex function. This term generalizes the integral of the |∇u|p. As a consequence of our results we find that, when f≤0, there exists a nonnegative minimizer. Moreover, every nonnegative minimizer is Lipschitz continuous, it is a solution to ΔGu=f in {u>0} and satisfies that H=Φ(|∇u|)−h on the reduced free boundary, ∂red{u>0} which, as a consequence, is proved to be as smooth as the data allow. Here Φ(t)=tg(t)−G(t) (g=G′) and H is the mean curvature of the free boundary.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FREE BOUNDARY REGULARITY  
dc.subject
MEAN CURVATURE  
dc.subject
MINIMIZATION PROBLEMS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A free boundary problem in Orlicz spaces related to mean curvature  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-04-28T14:14:13Z  
dc.journal.volume
212  
dc.journal.pagination
1-21  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal Of Nonlinear Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2021.112452  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X21001309?via%3Dihub