Artículo
On p-compact mappings and the p-approximation property
Fecha de publicación:
05/2012
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The notion of p-compact sets arises naturally from Grothendieck´s characterization of compact sets as those contained in the convex hull of a norm null sequence. The definition, due to Sinha and Karn (2002), leads to the concepts of p-approximation property and p-compact operators (which form an ideal with its ideal norm κp). This paper examines the interaction between the p-approximation property and certain space of holomorphic functions, the p-compact analytic functions. In order to understand these functions we define a p-compact radius of convergence which allows us to give a characterization of the functions in the class. We show that p-compact holomorphic functions behave more like nuclear than compact maps. We use the ε-product of Schwartz, to characterize the p-approximation property of a Banach space in terms of p-compact homogeneous polynomials and in terms of p-compact holomorphic functions with range on the space. Finally, we show that p-compact holomorphic functions fit into the framework of holomorphy types which allows us to inspect the κp-approximation property. Our approach also allows us to solve several questions posed by Aron, Maestre and Rueda (2010).
Palabras clave:
APPROXIMATION PROPERTIES
,
HOLOMORPHIC MAPPINGS
,
P-COMPACT SETS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lassalle, Silvia Beatriz; Turco, Pablo Alejandro; On p-compact mappings and the p-approximation property; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 389; 2; 5-2012; 1204-1221
Compartir
Altmétricas