Mostrar el registro sencillo del ítem

dc.contributor.author
Scala Benuzzi, María Luz  
dc.contributor.author
Soler Illia, Galo Juan de Avila Arturo  
dc.contributor.author
Raba, Julio  
dc.contributor.author
Battaglini, Fernando  
dc.contributor.author
Schneider, Rudolf J.  
dc.contributor.author
Pereira, Sirley Vanesa  
dc.contributor.author
Messina, Germán Alejandro  
dc.date.available
2022-06-30T03:35:21Z  
dc.date.issued
2021-09  
dc.identifier.citation
Scala Benuzzi, María Luz; Soler Illia, Galo Juan de Avila Arturo; Raba, Julio; Battaglini, Fernando; Schneider, Rudolf J.; et al.; Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy; Elsevier Science SA; Journal of Electroanalytical Chemistry; 897; 115604; 9-2021; 1-8  
dc.identifier.issn
1572-6657  
dc.identifier.uri
http://hdl.handle.net/11336/160850  
dc.description.abstract
In this work, we report an electrochemical immunosensor to detect ethinylestradiol in water samples, using electrochemical impedance spectroscopy (EIS) as a detection technique. For the development of this immunosensor, the direct modification of the working electrode of a screen-printed carbon electrode was carried out. First, to reduce the resistance of the electrode, electroreduced graphene was incorporated on the surface. Second, a porous gold structure was electrodeposited on reduced graphene by electrodeposition and the dynamic hydrogen bubble template assisted method. Thus, a marked increase in surface area was obtained for anti-EE2 antibodies immobilization. Subsequently, the specific anti-EE2 antibodies were covalently immobilized using α-lipoic acid for attaching them to the gold surface. The electrode modified with the antibodies was incubated for 30 min in the samples containing EE2, producing the specific antigen–antibody binding. As the charge transfer resistance of a redox probe in the electrode surface is governed by the surface blocking effects, the charge transfer resistance was related to the amount of EE2 captured to realize a quantitative determination. For this, the EIS measurements were performed in a 4 mM [Fe(CN)6]4−/3− solution in 0.1 M KCl. The obtained Nyquist diagrams were adjusted using the Randles circuit as an equivalent circuit to obtain the corresponding resistances. The developed methodology showed good selectivity, precision, and sensitivity; although the LOD obtained was higher than those presented in other published articles, it turned out to be an alternative that allows the determination of ethinylestradiol using a simple disposable electrode.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science SA  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ETHINYLESTRADIOL  
dc.subject
IMMUNOSENSOR  
dc.subject
GRAPHENE  
dc.subject
POROUS GOLD STRUCTURE  
dc.subject
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Immunosensor based on porous gold and reduced graphene platform for the determination of EE2 by electrochemical impedance spectroscopy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-13T18:51:37Z  
dc.journal.volume
897  
dc.journal.number
115604  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Scala Benuzzi, María Luz. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina  
dc.description.fil
Fil: Battaglini, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Schneider, Rudolf J.. Federal Institute for Materials Research and Testing; Alemania. Technische Universität Berlin; Alemania  
dc.description.fil
Fil: Pereira, Sirley Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina  
dc.description.fil
Fil: Messina, Germán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina  
dc.journal.title
Journal of Electroanalytical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jelechem.2021.115604  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S1572665721006305