Artículo
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
Fecha de publicación:
02/03/2018
Editorial:
Birkhauser Verlag Ag
Revista:
Zeitschrift Fur Angewandte Mathematik Und Physik
ISSN:
0044-2275
e-ISSN:
1420-9039
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-15
Compartir
Altmétricas