Mostrar el registro sencillo del ítem

dc.contributor.author
Huaylla, Claudia Alejandra  
dc.contributor.author
Nacif, Marcos Ezequiel  
dc.contributor.author
Coulin, Carolina  
dc.contributor.author
Kuperman, Marcelo Nestor  
dc.contributor.author
Garibaldi, Lucas Alejandro  
dc.date.available
2022-06-29T03:37:25Z  
dc.date.issued
2021-11  
dc.identifier.citation
Huaylla, Claudia Alejandra; Nacif, Marcos Ezequiel; Coulin, Carolina; Kuperman, Marcelo Nestor; Garibaldi, Lucas Alejandro; Decoding information in multilayer ecological networks: The keystone species case; Elsevier Science; Ecological Modelling; 460; 109734; 11-2021; 1-8  
dc.identifier.issn
0304-3800  
dc.identifier.uri
http://hdl.handle.net/11336/160699  
dc.description.abstract
The construction of a network capturing the topological structure linked to the interactions among species and the analysis of its properties constitutes a clarifying way to understand the functioning of an ecosystem at different scales of analysis. Here, we present a novel systematic procedure to profit from the enhanced information derived from considering its multiple levels and apply it to analyse the presence of keystone species. The proposed method presents a way to unveil the information stored in a network by comparing it to some randomised modification of itself. The randomising of the original network is done by swapping a controlled number of links while preserving the degree of the nodes. Then, we compare the modularity value of the original network with the randomised counterparts, which gives us a measure of the amount of relevant information stored in the first one. Once we have verified that the modularity value is meaningful, we use it to perform a community analysis and a characterisation of other topological properties in order to identify keystone species. We applied this method to a pollinator–plant–herbivore trophic network as a case study and we found that (a) the comparison between the modularity of the original and the randomised networks is a suitable tool to detect relevant information; and (b) identifying keystone species yields different results in bipartite networks from the ones obtained in networks of more than two trophic levels. We also analysed the effect of eliminating selected species from the system on the cohesion of the network. The selection of these species was made according to the centralities values, such as degree and betweenness, of the corresponding nodes. Our findings show that our analysis, mainly based on the measure of modularity is a reliable tool to characterise ecological networks. Additionally, we argue that since degree and betweenness are not always correlated, it is more reliable to measure both in an attempt to detect keystone species. The methodology proposed here to identify keystone species can be applied to other ecological networks currently available in the literature.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BETWEENNESS  
dc.subject
ECOSYSTEM  
dc.subject
MODULARITY  
dc.subject
RANDOM NETWORKS  
dc.subject
RESTORATION  
dc.subject
TROFIC NETWORKS  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Decoding information in multilayer ecological networks: The keystone species case  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-13T19:20:35Z  
dc.journal.volume
460  
dc.journal.number
109734  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Huaylla, Claudia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina  
dc.description.fil
Fil: Nacif, Marcos Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina  
dc.description.fil
Fil: Coulin, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina  
dc.description.fil
Fil: Kuperman, Marcelo Nestor. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina  
dc.description.fil
Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina  
dc.journal.title
Ecological Modelling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecolmodel.2021.109734  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304380021002842