Mostrar el registro sencillo del ítem

dc.contributor.author
Knapp, Michal  
dc.contributor.author
González, Ezequiel  
dc.contributor.author
Strobl, Martin  
dc.contributor.author
Seidl, Miroslav  
dc.contributor.author
Jakubikova, Lada  
dc.contributor.author
Číek, Oldřich  
dc.contributor.author
Balvín, Ondřej  
dc.contributor.author
Benda, Daniel  
dc.contributor.author
Teder, Tiit  
dc.contributor.author
Kadlec, Tomás  
dc.date.available
2022-06-28T16:24:22Z  
dc.date.issued
2022-02  
dc.identifier.citation
Knapp, Michal; González, Ezequiel; Strobl, Martin; Seidl, Miroslav; Jakubikova, Lada; et al.; Artificial field defects: A low-cost measure to support arthropod diversity in arable fields; Elsevier Science; Agriculture, Ecosystems and Environment; 325; 2-2022; 1-10  
dc.identifier.issn
0167-8809  
dc.identifier.uri
http://hdl.handle.net/11336/160664  
dc.description.abstract
Biodiversity is rapidly declining worldwide, with agricultural intensification being among the main drivers of this process. Effective conservation measures in agricultural landscapes are therefore urgently needed. Here we introduce a novel low-cost conservation measure called artificial field defects, i.e., areas where crop is not sown and spontaneous vegetation grows. To evaluate their biodiversity potential, we compared abundance and species richness of various arthropod taxa between artificially created field defects and control plots within oilseed rape (OSR) fields. The effectiveness of field defects to support biodiversity was examined using an experiment with a factorial design comparing OSR flowering and ripening phases, location of field defects (field edge vs interior) and field defect type (sown with a nectar-rich plant vs no sowing). Arthropod sampling was conducted by employing several complementary methods: pitfall trapping, pan trapping, sweep netting and individual counting. Butterflies, true bugs, bees and wasps were more abundant and species-rich in both types of defects than in OSR controls. In contrast, ground-dwelling taxa had more individuals and species in controls. Overall, arthropod abundance and species richness increased, and field defects became relatively more attractive, during OSR ripening compared to OSR flowering. Location of defects had little effect, with only butterfly and spider assemblages being more abundant and species-rich at field edges compared to interiors. Our data indicate that artificial field defects can provide a simple agri-environmental measure to support various arthropod groups. However, further studies are needed to assess their biodiversity value at the landscape scale, and evaluate the balance between costs and benefits for farmers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGRI-ENVIRONMENTAL SCHEMES  
dc.subject
AGROECOSYSTEMS  
dc.subject
BENEFICIAL ARTHROPODS  
dc.subject
BIODIVERSITY  
dc.subject
INSECTS  
dc.subject
NON-CROP HABITATS  
dc.subject.classification
Conservación de la Biodiversidad  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Artificial field defects: A low-cost measure to support arthropod diversity in arable fields  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-06-22T20:12:53Z  
dc.journal.volume
325  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Knapp, Michal. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: González, Ezequiel. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Strobl, Martin. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Seidl, Miroslav. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Jakubikova, Lada. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Číek, Oldřich. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Balvín, Ondřej. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Benda, Daniel. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Teder, Tiit. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.description.fil
Fil: Kadlec, Tomás. Czech University of Life Sciences Prague. Faculty of Environmental Sciences. Departament of Ecology; República Checa  
dc.journal.title
Agriculture, Ecosystems and Environment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0167880921004527  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agee.2021.107748