Mostrar el registro sencillo del ítem
dc.contributor.author
Jelenc, David
dc.contributor.author
Tamargo, Luciano Héctor
dc.contributor.author
Gottifredi, Sebastián
dc.contributor.author
García, Alejandro Javier
dc.date.available
2022-06-28T14:30:23Z
dc.date.issued
2021-04
dc.identifier.citation
Jelenc, David; Tamargo, Luciano Héctor; Gottifredi, Sebastián; García, Alejandro Javier; Credibility Dynamics: A belief-revision-based trust model with pairwise comparisons; Elsevier Science; Artificial Intelligence; 293; 4-2021; 1-24
dc.identifier.issn
0004-3702
dc.identifier.uri
http://hdl.handle.net/11336/160626
dc.description.abstract
Trust models have become invaluable in dynamic scenarios, such as Internet applications, since they provide means for estimating trustworthiness of potential interaction counterparts. Currently, the majority of trust models require ratings to be expressed absolutely, that is as values from some predefined scale. However, literature shows that expressing ratings absolutely can be challenging for users and susceptible to their bias. But these issues can be tackled if instead of asking users to rate with absolute values, we ask them to express preferences between pairs of alternatives. Thus, in this paper we propose a trust model where pairwise comparisons are used as ratings and where trust is expressed as a strict partial order induced over agents. To maintain a sound ordering, the model uses a belief revision technique that prevents contradictions that may arise when adding new information. The technique uses mechanisms that reason quantitatively about the reliability of information allowing the model to time-discount ratings as well as withstand deceit. We evaluate the model in a series of experiments and compare the results against established trust models. The results show that the model quickly adapts to changes, gracefully handles deceitful, noisy and biased information, and generally achieves good accuracy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CREDIBILITY ORDERS
dc.subject
MULTI-AGENT SYSTEM
dc.subject
REPUTATION
dc.subject
TRUST
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Credibility Dynamics: A belief-revision-based trust model with pairwise comparisons
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-06-13T18:15:41Z
dc.journal.volume
293
dc.journal.pagination
1-24
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Jelenc, David. University of Ljubljana. Faculty of Computer and Information Science; Eslovenia
dc.description.fil
Fil: Tamargo, Luciano Héctor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Gottifredi, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: García, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0004370221000011
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.artint.2021.103450
Archivos asociados