Artículo
Solving constrained optimization using a t-cell artificial immune system
Fecha de publicación:
10/2008
Editorial:
Asociación Española para la Inteligencia Artificial
Revista:
Inteligencia Artificial
ISSN:
1137-3601
e-ISSN:
1988-3064
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.
Palabras clave:
ARTIFICIAL IMMUNE SYSTEMS
,
CONSTRAINED OPTIMIZATION PROBLEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos; Solving constrained optimization using a t-cell artificial immune system; Asociación Española para la Inteligencia Artificial; Inteligencia Artificial; 12; 40; 10-2008; 7-22
Compartir