Artículo
Optimizing constrained problems through a T-Cell artificial immune system
Fecha de publicación:
10/2008
Editorial:
Universidad Nacional de La Plata. Facultad de Informática
Revista:
Journal of Computer Science & Technology
ISSN:
1666-6046
e-ISSN:
1666-6038
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we present a new model of an artificial immune system (AIS), based on the process that suffers the T-Cell, it is called T-Cell Model. It is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-theart in the area), with respect to an AIS previously proposed and a self-organizing migrating genetic algorithm for constrained optimization (C-SOMGA).
Palabras clave:
ARTIFICIAL IMMUNE SYSTEMS
,
CONSTRAINED OPTIMIZATION PROBLEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos; Optimizing constrained problems through a T-Cell artificial immune system; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 8; 3; 10-2008; 158-165
Compartir