Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics

Aguiar, Maíra; Van Dierdonck, Joseba Bidaurrazaga; Mar, Javier; Cusimano, Nicole; Knopoff, Damián AlejandroIcon ; Anam, Vizda; Stollenwerk, Nico
Fecha de publicación: 12/2021
Editorial: Nature Research
Revista: Scientific Reports
e-ISSN: 2045-2322
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Epidemiología

Resumen

As the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. The momentary reproduction ratio r(t) of an epidemic is used as a public health guiding tool to evaluate the course of the epidemic, with the evolution of r(t) being the reasoning behind tightening and relaxing control measures over time. Here we investigate critical fluctuations around the epidemiological threshold, resembling new waves, even when the community disease transmission rate β is not significantly changing. Without loss of generality, we use simple models that can be treated analytically and results are applied to more complex models describing COVID-19 epidemics. Our analysis shows that, rather than the supercritical regime (infectivity larger than a critical value, β> βc) leading to new exponential growth of infection, the subcritical regime (infectivity smaller than a critical value, β< βc) with small import is able to explain the dynamic behaviour of COVID-19 spreading after a lockdown lifting, with r(t) ≈ 1 hovering around its threshold value.
Palabras clave: EPIDEMIOLOGICAL MODELS , COVID-19 , CRITICAL FLUCTUATIONS , STOCHASTIC MODELS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.777Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/159641
DOI: http://dx.doi.org/10.1038/s41598-021-93366-7
URL: https://www.nature.com/articles/s41598-021-93366-7
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Aguiar, Maíra; Van Dierdonck, Joseba Bidaurrazaga; Mar, Javier; Cusimano, Nicole; Knopoff, Damián Alejandro; et al.; Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics; Nature Research; Scientific Reports; 11; 13839; 12-2021; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES