Mostrar el registro sencillo del ítem

dc.contributor.author
Müller, Tobias M.  
dc.contributor.author
Caspari, Eva  
dc.contributor.author
Qi, Qiaomu  
dc.contributor.author
Rubino, Jorge German  
dc.contributor.author
Velis, Danilo Ruben  
dc.contributor.author
Lopes, Sofia  
dc.contributor.author
Lebedev, Maxim  
dc.contributor.author
Gurevich, Boris  
dc.contributor.other
Ba, Jing  
dc.contributor.other
Du, Qizhen  
dc.contributor.other
Carcione, Jose M.  
dc.contributor.other
Zhang, Hounzhu  
dc.contributor.other
Müller, Tobias M.  
dc.date.available
2022-06-13T18:04:40Z  
dc.date.issued
2015  
dc.identifier.citation
Müller, Tobias M.; Caspari, Eva; Qi, Qiaomu; Rubino, Jorge German; Velis, Danilo Ruben; et al.; Acoustics of partially saturated rocks: Theory and experiments; Elsevier; 2015; 45-75  
dc.identifier.isbn
978-0-12-420151-4  
dc.identifier.uri
http://hdl.handle.net/11336/159594  
dc.description.abstract
The presence of fluids in the pore space of rocks causes wave attenuation and dispersion by the mechanism broadly known as wave-induced fluid flow (WIFF). WIFF occurs as a seismic wave creates pressure gradients within the fluid phase and the resulting oscillatory movement of the fluid relative to the solid is accompanied with internal friction until the fluid pressure is equilibrated. If two immiscible pore fluids with substantially different fluid bulk moduli -such as water and gas- form patches, significant wave attenuation and dispersion result. Their frequency dependence is controlled by the size, shape, and spatial distribution of fluid patches. We focus on so-called mesoscopic patches referring to a length scale much larger than typical pore size and yet much smaller than the seismic wavelength. To decode WIFF effects in the laboratory setting we interpret experimental results of ultrasonic signatures of sandstone and limestone core samples during water injection. Therein, the progress of water-saturation is monitored via computerized tomography. Depending on the injection rate and overall saturation characteristic water-patch distributions at the millimetre-scale are observed. We also monitor saturation-induced acoustic changes using ultrasonic transducers. From these wave field recordings we infer wave velocity and attenuation as a function of saturation. We show that the observed acoustic signatures can be modelled using random patchy saturation models based on Biot?s theory of poroelasticity. To understand implications of WIFF at the sonic frequency band we analyse time-lapse well-log data from the CO2 geosequestration site in Nagaoka, Japan. We retrieve a wave velocity-saturation relation that can be explained in terms of WIFF at fluid patches. Thus, mesoscopic heterogeneity can be responsible for attenuation and dispersion in the well logging frequency band. To study the implications on seismic signatures, we construct a modeling scenario inspired by the storage project at the Sleipner field, Norway. Through a numerical upscaling technique we demonstrate that WIFF in the presence of centimeter-scale fluid patches may produce noticeable kinematic changes and amplitude distortions in seismic data  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Wave-induced fluid flow  
dc.subject
Porsous media  
dc.subject
Poroelasticity  
dc.subject
Patchy saturation  
dc.subject.classification
Geoquímica y Geofísica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Acoustics of partially saturated rocks: Theory and experiments  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2022-03-02T15:53:51Z  
dc.journal.pagination
45-75  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Müller, Tobias M.. No especifíca;  
dc.description.fil
Fil: Caspari, Eva. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Qi, Qiaomu. Curtin University; Australia  
dc.description.fil
Fil: Rubino, Jorge German. Universite de Lausanne; Suiza. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Velis, Danilo Ruben. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Departamento de Geofísica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Lopes, Sofia. Curtin University; Australia  
dc.description.fil
Fil: Lebedev, Maxim. Curtin University; Australia  
dc.description.fil
Fil: Gurevich, Boris. Curtin University; Australia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-12-420151-4.00003-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780124201514000039?via%3Dihub  
dc.conicet.paginas
362  
dc.source.titulo
Seismic exploration of hydrocarbons in heterogeneous reservoirs: New theories, methods and applications