Artículo
A heat equation with memory: large-time behavior
Fecha de publicación:
06/2021
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the large-time behavior in all Lp norms of solutions to a heat equation with a Caputo α-time derivative posed in RN (0 < α < 1). These are known as subdiffusion equations. The initial data are assumed to be integrable, and, when required, to be also in Lp. We find that the decay rate in all Lp norms, 1 ≤ p ≤ ∞, depends greatly on the space-time scale under consideration. This result explains in particular the so called “critical dimension phenomenon” (cf. [21]). Moreover, we find the final profiles (that strongly depend on the scale). The most striking result states that in compact sets the final profile (in all Lp norms) is a multiple of the Newtonian potential of the initial datum.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; A heat equation with memory: large-time behavior; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 281; 9; 6-2021; 1-40
Compartir
Altmétricas