Mostrar el registro sencillo del ítem
dc.contributor.author
Cagnina, Leticia Cecilia
dc.contributor.author
Esquivel, Susana Cecilia
dc.contributor.author
Coello Coello, Carlos
dc.contributor.other
Dahal, Keshav P.
dc.contributor.other
Chen Tan, Kay
dc.contributor.other
Cowling, Peter I.
dc.date.available
2022-06-09T18:09:45Z
dc.date.issued
2007
dc.identifier.citation
Cagnina, Leticia Cecilia; Esquivel, Susana Cecilia; Coello Coello, Carlos; Hybrid particle swarm optimizers in the single machine scheduling problem: an experimental study; Springer Verlag Berlín; 2007; 143-164
dc.identifier.isbn
978-3-540-48582-7
dc.identifier.issn
1860-949X
dc.identifier.uri
http://hdl.handle.net/11336/159403
dc.description.abstract
Although Particle Swarm Optimizers (PSO) have been successfully used in a wide variety of continuous optimization problems, their use has not been as widespread in discrete optimization problems, particularly when adopting non-binary encodings. In this chapter, we discuss three PSO variants (which are applied on a specific scheduling problem: the Single Machine Total Weighted Tardiness): a Hybrid PSO (HPSO), a Hybrid PSO with a simple neighborhood topology (HPSOneigh) and a new version that adds problem-specific knowledge to HPSOneigh (HPSOkn). The last approach is used to guide the blind search that PSO usually does and reduces its computational cost (measured in terms of the objective function evaluations performed). It is also shown that HPSOkn obtains good results with a lower computational cost, when comparing it against the other PSO versions analyzed, and with respect to a classical PSO approach and to a multirecombined evolutionary algorithm (MCMP-SRI-IN), which contains specialized operators to tackle single machine total weighted tardiness problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Verlag Berlín
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.source
https://www.springer.com/series/7092
dc.subject
PARTICLE SWARM OPTIMIZATION
dc.subject
SINGLE MACHINE SCHEDULING
dc.subject
HYBRIDIZING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Hybrid particle swarm optimizers in the single machine scheduling problem: an experimental study
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2022-06-09T13:32:19Z
dc.identifier.eissn
1860-9503
dc.journal.pagination
143-164
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cagnina, Leticia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
dc.description.fil
Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
dc.description.fil
Fil: Coello Coello, Carlos. Instituto Politécnico Nacional; México
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-540-48584-1_6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-540-48584-1_6
dc.conicet.paginas
628
dc.source.titulo
Evolutionary scheduling
Archivos asociados