Mostrar el registro sencillo del ítem

dc.contributor.author
Cagnina, Leticia Cecilia  
dc.contributor.author
Esquivel, Susana Cecilia  
dc.contributor.author
Coello Coello, Carlos  
dc.contributor.other
Dahal, Keshav P.  
dc.contributor.other
Chen Tan, Kay  
dc.contributor.other
Cowling, Peter I.  
dc.date.available
2022-06-09T18:09:45Z  
dc.date.issued
2007  
dc.identifier.citation
Cagnina, Leticia Cecilia; Esquivel, Susana Cecilia; Coello Coello, Carlos; Hybrid particle swarm optimizers in the single machine scheduling problem: an experimental study; Springer Verlag Berlín; 2007; 143-164  
dc.identifier.isbn
978-3-540-48582-7  
dc.identifier.issn
1860-949X  
dc.identifier.uri
http://hdl.handle.net/11336/159403  
dc.description.abstract
Although Particle Swarm Optimizers (PSO) have been successfully used in a wide variety of continuous optimization problems, their use has not been as widespread in discrete optimization problems, particularly when adopting non-binary encodings. In this chapter, we discuss three PSO variants (which are applied on a specific scheduling problem: the Single Machine Total Weighted Tardiness): a Hybrid PSO (HPSO), a Hybrid PSO with a simple neighborhood  topology (HPSOneigh) and a new version that adds problem-specific knowledge to HPSOneigh (HPSOkn). The last approach is used to guide the blind search that PSO usually does and reduces its computational cost (measured in terms of the objective function evaluations performed). It is also shown that HPSOkn obtains good results with a lower computational cost, when comparing it against the other PSO versions analyzed, and with respect to a classical PSO  approach and to a multirecombined evolutionary algorithm (MCMP-SRI-IN), which contains specialized operators to tackle single machine total weighted tardiness problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.source
https://www.springer.com/series/7092  
dc.subject
PARTICLE SWARM OPTIMIZATION  
dc.subject
SINGLE MACHINE SCHEDULING  
dc.subject
HYBRIDIZING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hybrid particle swarm optimizers in the single machine scheduling problem: an experimental study  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2022-06-09T13:32:19Z  
dc.identifier.eissn
1860-9503  
dc.journal.pagination
143-164  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Cagnina, Leticia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Coello Coello, Carlos. Instituto Politécnico Nacional; México  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-540-48584-1_6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-540-48584-1_6  
dc.conicet.paginas
628  
dc.source.titulo
Evolutionary scheduling