Artículo
Robust functional linear regression based on splines
Fecha de publicación:
09/2013
Editorial:
Elsevier Science
Revista:
Computational Statistics And Data Analysis
ISSN:
0167-9473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Many existing methods for functional regression are based on the minimization of an L2 norm of the residuals and are therefore sensitive to atypical observations, which may affect the predictive power and/or the smoothness of the resulting estimate. A robust version of a spline-based estimate is presented, which has the form of an MM estimate, where the L2 loss is replaced by a bounded loss function. The estimate can be computed by a fast iterative algorithm. The proposed approach is compared, with favorable results, to the one based on L2 and to both classical and robust Partial Least Squares through an example with high-dimensional real data and a simulation study.
Palabras clave:
Mm Estimate
,
Natural Splines
,
Robust Ridge Estimator
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Maronna, Ricardo A.; Yohai, Victor Jaime; Robust functional linear regression based on splines; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 46-55
Compartir
Altmétricas