Artículo
Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration
Fecha de publicación:
01/2013
Editorial:
Discrete Mathematics And Theoretical Computer Science
Revista:
Discrete Mathematics And Theoretical Computer Science
ISSN:
1365-8050
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A biclique is a set of vertices that induce a complete bipartite graph. A graph G is biclique-Helly when its family of maximal bicliques satisfies the Helly property. If every induced subgraph of G is also biclique-Helly, then G is hereditary biclique-Helly. A graph is C4-dominated when every cycle of length 4 contains a vertex that is dominated by the vertex of the cycle that is not adjacent to it. In this paper we show that the class of hereditary biclique-Helly graphs is formed precisely by those C4-dominated graphs that contain no triangles and no induced cycles of length either 5 or 6. Using this characterization, we develop an algorithm for recognizing hereditary biclique-Helly graphs in O(n 2 +αm) time and O(n+m) space. (Here n, m, and α = O(m1/2 ) are the number of vertices and edges, and the arboricity of the graph, respectively.) As a subprocedure, we show how to recognize those C4-dominated graphs that contain no triangles in O(αm) time and O(n + m) space. Finally, we show how to enumerate all the maximal bicliques of a C4-dominated graph with no triangles in O(n 2 + αm) time and O(αm) space.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Eguía, Martiniano; Soulignac, Francisco Juan; Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration; Discrete Mathematics And Theoretical Computer Science; Discrete Mathematics And Theoretical Computer Science; 15; 1; 1-2013; 55-74
Compartir