Mostrar el registro sencillo del ítem

dc.contributor.author
Sued, Raquel Mariela  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2017-05-03T19:57:23Z  
dc.date.issued
2013-03  
dc.identifier.citation
Sued, Raquel Mariela; Yohai, Victor Jaime; Robust location estimation with missing data; Statistical Society of Canada; Canadian Journal Of Statistics-revue Canadienne de Statistique; 41; 1; 3-2013; 111-132  
dc.identifier.issn
0319-5724  
dc.identifier.uri
http://hdl.handle.net/11336/15926  
dc.description.abstract
In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online.  
dc.description.abstract
Avec les donnees manquantes, nous avons un ´ echantillon pour lequel les variables explicatives ´ xi sont observees pour chaque sujet ´ i, tandis que les variables reponses ´ yi sont manquantes au hasard pour quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution des variables reponses en supposant que les donn ´ ees soient manquantes au hasard (MAR), sous un mod ´ ele ` de regression non param ´ etrique. Notre approche permet l’estimation coh ´ erente de n’importe quelle fonction- ´ nelle faiblement continue de la distribution des variables reponses. Plus particuli ´ erement, nous proposons des ` L- et M-fonctionnelles qui sont des estimateurs fortement coherents de n’importe quelle fonctionnelle con- ´ tinue du parametre de position (par exemple, la m ` ediane). Une m ´ ethode d’ajustement robuste du mod ´ ele de ` regression combin ´ ee aux propri ´ et´ es de robustesse des fonctionnelles de tendance centrale fournissent une ´ methode robuste pour l’estimation du param ´ etre de position. La robustesse de notre proc ` edure est mesur ´ ee´ a l’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs ` du parametre de position. Des suppl ` ements, contenant les d ´ emonstrations des th ´ eor ´ emes, sont disponibles ` en ligne.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Statistical Society of Canada  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Missing at Random  
dc.subject
M-Location Functional  
dc.subject
Asymptotic Distribution  
dc.subject
Breakdown Point  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust location estimation with missing data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T20:59:00Z  
dc.journal.volume
41  
dc.journal.number
1  
dc.journal.pagination
111-132  
dc.journal.pais
Canadá  
dc.journal.ciudad
Ottawa  
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Canadian Journal Of Statistics-revue Canadienne de Statistique  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cjs.11163  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cjs.11163/abstract