Mostrar el registro sencillo del ítem

dc.contributor.author
Botbol, Nicolas Santiago  
dc.date.available
2017-05-03T19:57:14Z  
dc.date.issued
2011-12  
dc.identifier.citation
Botbol, Nicolas Santiago; The implicit equation of a multigraded hypersurface; Elsevier Inc; Journal Of Algebra; 348; 1; 12-2011; 381-401  
dc.identifier.issn
0021-8693  
dc.identifier.uri
http://hdl.handle.net/11336/15925  
dc.description.abstract
In this article we analyze the implicitization problem of the image of a rational map φ : X Pn, with X a toric variety of dimension n − 1 defined by its Cox ring R. Let I := (f0,..., fn) be n + 1 homogeneous elements of R. We blow-up the base locus of φ, V (I), and we approximate the Rees algebra ReesR (I) of this blow-up by the symmetric algebra SymR (I). We provide under suitable assumptions, resolutions Z• for SymR (I) graded by the divisor group of X , Cl(X), such that the determinant of a graded strand, det((Z•)μ), gives a multiple of the implicit equation, for suitable μ ∈ Cl(X). Indeed, we compute a region in Cl(X) which depends on the regularity of SymR (I) where to choose μ. We also give a geometrical interpretation of the possible other factors appearing in det((Z•)μ). A very detailed description is given when X is a multiprojective space.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Implicitization  
dc.subject
Multigraded Algebra  
dc.subject
Representation Matrices  
dc.subject
Approximation Complex  
dc.subject
Castelnuovo–Mumford Regularity  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The implicit equation of a multigraded hypersurface  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-02T20:59:18Z  
dc.journal.volume
348  
dc.journal.number
1  
dc.journal.pagination
381-401  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Botbol, Nicolas Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Universite Pierre et Marie Curie; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2011.09.019  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0021869311005369?via%3Dihub