Mostrar el registro sencillo del ítem

dc.contributor.author
Leeuwen, Peter Jan van  
dc.contributor.author
DeCaria, Michael  
dc.contributor.author
Chakraborty, Nachiketa  
dc.contributor.author
Pulido, Manuel Arturo  
dc.date.available
2022-06-06T10:22:41Z  
dc.date.issued
2021-12  
dc.identifier.citation
Leeuwen, Peter Jan van; DeCaria, Michael; Chakraborty, Nachiketa; Pulido, Manuel Arturo; A framework for causal discovery in non-intervenable systems; American Institute of Physics; Chaos; 31; 12; 12-2021; 1-19  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/158972  
dc.description.abstract
Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SHANNON  
dc.subject
TIME SERIES  
dc.subject
MULTIVARIATE CAUSALITY  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A framework for causal discovery in non-intervenable systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-05-06T16:44:34Z  
dc.identifier.eissn
1089-7682  
dc.journal.volume
31  
dc.journal.number
12  
dc.journal.pagination
1-19  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Leeuwen, Peter Jan van. State University of Colorado - Fort Collins; Estados Unidos  
dc.description.fil
Fil: DeCaria, Michael. State University of Colorado - Fort Collins; Estados Unidos  
dc.description.fil
Fil: Chakraborty, Nachiketa. University of Reading; Reino Unido  
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0054228  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0054228