Artículo
The structure of group preserving operators
Barbieri, Davide; Cabrelli, Carlos
; Carbajal, Diana Agustina
; Hernández Rodríguez, Eugenio; Molter, Ursula Maria
Fecha de publicación:
27/04/2021
Editorial:
Springer
Revista:
Sampling Theory, Signal Processing, and Data Analysis
ISSN:
2730-5716
e-ISSN:
2730-5724
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, we prove the existence of a particular diagonalization for normal bounded operators defined on subspaces of 2() where is a second countable LCA group. The subspaces where the operators act are invariant under the action of a group Γ which is a semi-direct product of a uniform lattice of with a discrete group of automorphisms. This class includes the crystal groups which are important in applications as models for images. The operators are assumed to be Γ preserving. i.e. they commute with the action of Γ. In particular, we obtain a spectral decomposition for these operators. This generalizes recent results on shift-preserving operators acting on lattice invariant subspaces where is the Euclidean space.
Palabras clave:
Invariant Subspaces
,
Parseval frames
,
Normal Operators
,
Diagonlization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Barbieri, Davide; Cabrelli, Carlos; Carbajal, Diana Agustina; Hernández Rodríguez, Eugenio; Molter, Ursula Maria; The structure of group preserving operators; Springer; Sampling Theory, Signal Processing, and Data Analysis; 19; 1; 27-4-2021; 1-22
Compartir
Altmétricas