Evento
Automated inmunohistochemical staining quantification in human biopsies: preliminary results using deep learning
Quiñones, Michael; Doctorovich, Juan; Revollo, Natalia; Alonso, Exequiel Gonzalo
; Fernández Chávez, Lucía
; Facchinetti, Maria Marta
; Curino, Alejandro Carlos
; Delrieux, Claudio Augusto
; Colo, Georgina Pamela
Colaboradores:
Curino, Alejandro Carlos
; Maccioni, Mariana
; Schaiquevich, Paula Susana
; Duran, Hebe Alicia
Tipo del evento:
Reunión
Nombre del evento:
LXVI Reunión anual de la Sociedad Argentina de Investigación Clínica; LXIX Reunión anual de la Sociedad Argentina de Immunología; LIII Reunión anual de la Asociación Argentina de Farmacología Experimental y XI Reunión anual de la Asociación Argentina de Nanomedicinas
Fecha del evento:
17/11/2021
Institución Organizadora:
Sociedad Argentina de Investigación Clínica;
Sociedad Argentina de Inmunología;
Asociación Argentina de Farmacología Experimental;
Asociación Argentina de Nanomedicinas;
Título de la revista:
Medicina (Buenos Aires)
Editorial:
Fundación Revista Medicina
ISSN:
0025-7680
e-ISSN:
1669-9106
Idioma:
Inglés
Clasificación temática:
Resumen
Among the current challenges in histopathological assessment for diagnosis in clinical contexts is an accurate determination of the actual tissue malignancy. This task is often performed using microscopy over immunohistochemical (IHQ) staining applied on tissue samples, on which several specialists judge the tissue con- dition following specific criteria. However, this task is proven to be prone to high inter- and intra-subject variance, which raises the need to elaborate more robust tools and frameworks to assist on this task. The recent influx of deep learning technologies, which are proven to be successful in a variety of contexts, appears to be an adequate alternative in this context. In this aim, we present a joint effort between research groups from Cancer Biology Laboratory (INIBIBB-CONICET) and the Imaging Sciences Laboratory (LCI- UNS-CONICET). Starting with IHQ stained images taken with Olym- pus CX31 microscope from thyroid and breast cancer biopsies, we applied a Mask C-RNN network for cell nuclei detection. For this purpose, we retrained the net with a series of labeled examples pro- vided by the biochemical specialists. After this initial detection, a ROI was determined surrounding the nuclei, within which the proportion of diaminobenzidine stain (brown-colored precipitation) is computed as a proxy indicator of the Immunoreactive Score (IRS). For this, a Random Forest classifier was trained using stain/no stain labeled pixels also provided by the experts. The results appear promising in the sense that the resulting system is able to consistently provide malignancy assessment even in difficult cases or when the quality of the microscopy acquisition is below standard.
Palabras clave:
CANCER
,
DEEP LEARNING
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(INIBIBB)
Eventos de INST.DE INVEST.BIOQUIMICAS BAHIA BLANCA (I)
Eventos de INST.DE INVEST.BIOQUIMICAS BAHIA BLANCA (I)
Citación
Automated inmunohistochemical staining quantification in human biopsies: preliminary results using deep learning; LXVI Reunión anual de la Sociedad Argentina de Investigación Clínica; LXIX Reunión anual de la Sociedad Argentina de Immunología; LIII Reunión anual de la Asociación Argentina de Farmacología Experimental y XI Reunión anual de la Asociación Argentina de Nanomedicinas; Buenos Aires; Argentina; 2021; 76-77
Compartir