Artículo
A new elliptic mixed boundary value problem with (p,q)-Laplacian and Clarke subdifferential: Existence, comparison and convergence results
Fecha de publicación:
12/2021
Editorial:
World Scientific
Revista:
Analysis And Applications
ISSN:
0219-5305
e-ISSN:
1793-6861
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The goal of this paper is to investigate a new class of elliptic mixed boundary value problems involving a nonlinear and nonhomogeneous partial differential operator (p,q)-Laplacian, and a multivalued term represented by Clarke’s generalized gradient. First, we apply a surjectivity result for multivalued pseudomonotone operators to examine the existence of weak solutions under mild hypotheses. Then, a comparison theorem is delivered, and a convergence result, which reveals the asymptotic behavior of solution when the parameter (heat transfer coefficient) tends to infinity, is obtained. Finally, we establish a continuous dependence result of solution to the boundary value problem on the data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Zeng, Shengda; Migórski, Stanislaw; Tarzia, Domingo Alberto; A new elliptic mixed boundary value problem with (p,q)-Laplacian and Clarke subdifferential: Existence, comparison and convergence results; World Scientific; Analysis And Applications; 2021; 12-2021; 1-20
Compartir
Altmétricas