Artículo
Evolutionary algorithms with clustering for dynamic fitness landscapes
Fecha de publicación:
12/2005
Editorial:
Universidad Nacional de La Plata. Facultad de Informática
Revista:
Journal of Computer Science & Technology
ISSN:
1666-6046
e-ISSN:
1666-6038
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Interest on dynamic multimodal functions risen over the last years since many real problems have this feature. On these problems, the goal is no longer to find the global optimal, but to track their progression through the space as closely as possible. This paper presents three evolutionary algorithms for dynamic fitness landscapes. In order to mantain diversity in the population they use two clustering techniques and a macromutation operator. Besides, this paper compares two crossover operators: arithmetic and multiparents two points, respectively. Effectiveness and limitations of each algorithm are discuss and analyzed.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Evolutionary algorithms with clustering for dynamic fitness landscapes; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 5; 4; 12-2005; 196-203
Compartir