Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Social Relations and Methods in Recommender Systems: A Systematic Review

Medel Canales, Diego AlejandroIcon ; González González, Carina Soledad; Aciar, Silvana VanesaIcon
Fecha de publicación: 12/2021
Editorial: Universidad Internacional de La Rioja
Revista: International Journal of Interactive Multimedia and Artificial Intelligence
e-ISSN: 1989-1660
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

With the constant growth of information, data sparsity problems, and cold start have become a complex problem in obtaining accurate recommendations. Currently, authors consider the user´s historical behavior and find contextual information about the user, such as social relationships, time information, and location. In this work, a systematic review of the literature on recommender systems that use the information on social relationships between users was carried out. As the main findings, social relations were classified into three groups: trust, friend activities, and user interactions. Likewise, the collaborative filtering approach was the most used, and with the best results, considering the methods based on memory and model. The most used metrics that we found, and the recommendation methods studied in mobile applications are presented. The information provided by this study can be valuable to increase the precision of the recommendations.
Palabras clave: COLLABORATIVE FILTERING , RECOMMENDATION SYSTEMS , SYSTEMATIC REVIEW , SOCIAL RELATIONSHIPS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 736.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/157958
URL: https://www.ijimai.org/journal/sites/default/files/2021-12/ip2021_12_004.pdf
DOI: http://dx.doi.org/10.9781/ijimai.2021.12.004
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Citación
Medel Canales, Diego Alejandro; González González, Carina Soledad; Aciar, Silvana Vanesa; Social Relations and Methods in Recommender Systems: A Systematic Review; Universidad Internacional de La Rioja; International Journal of Interactive Multimedia and Artificial Intelligence; 2021; 12-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES