Artículo
Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils
Sulatskaya, Anna I.; Bondarev, Stanislav A.; Sulatsky, Maksim I.; Trubitsina, Nina P.; Belousov, Mikhail V.; Zhouravleva, Galina A.; Llanos, Manuel
; Kajava, Andrey V.; Kuznetsova, Irina M.; Turoverov, Konstantin K.
Fecha de publicación:
09/2020
Editorial:
Elsevier Science
Revista:
Journal of Molecular Liquids
ISSN:
0167-7322
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We investigated the effect of the point substitutions in the N-terminal domain of the yeast prion protein Sup35 (Sup35NMp) on the structure of its amyloid fibrils. As the objects of the study, proteins with mutations that have different influence on the [PSI+] prion propagation, but do not prevent the aggregation of Sup35NMp in vitro were chosen. The use of the wide range of physico-chemical methods allowed us to show significant differences in the structure of these aggregates, their physical size, clumping tendency. Also we demonstrated that the fluorescent probe thioflavin T (ThT) can be successfully used for investigation of subtle changes in the structural organization of fibrils formed from various Sup35NMp. The obtained results and our theoretical predictions allowed us to conclude that some of selected amino acid substitutions delimit the region of the protein that forms the core of amyloid fibrils, and change the fibrils structure. The relationship of structural features of in vitro Sup35NMp amyloid aggregates with the stability of the [PSI+] prion in vivo allowed us to suggest that oligopeptide repeats (R) of the amyloidogenic N-terminal domain of Sup35NMp from R0 to R2 play a key role in protein aggregation. Their arrangement rather than just presence is critical for propagation of the strong [PSI+] prion variants. The results confirm the suitability of the proposed combination of theoretical and empirical approaches for identifying changes in the amyloid fibrils structure, which, in turn, can significantly affect both the functional stability of amyloid fibrils and their pathogenicity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Sulatskaya, Anna I.; Bondarev, Stanislav A.; Sulatsky, Maksim I.; Trubitsina, Nina P.; Belousov, Mikhail V.; et al.; Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils; Elsevier Science; Journal of Molecular Liquids; 314; 9-2020; 1-12
Compartir
Altmétricas