Artículo
Quantum function algebras from finite-dimensional Nichols algebras
Fecha de publicación:
10/2020
Editorial:
European Mathematical Society
Revista:
Journal of Noncommutative Geometry
ISSN:
1661-6952
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe how to find quantum determinants and antipode formulas from braidedvector spaces using the FRT-construction and finite-dimensional Nichols algebras. It improvesthe construction of quantum function algebras using quantum grassmanian algebras.Given a finite-dimensional Nichols algebra B, our method provides a Hopf algebraH such that B is a braided Hopf algebra in the category of H-comodules. It also serves assource to produce Hopf algebras generated by cosemisimple subcoalgebras, which are ofinterest for the generalized lifting method. We give several examples, among them quantumfunction algebras from Fomin-Kirillov algebras associated with the symmetric groupon three letters.
Palabras clave:
QUANTUM FUNCTION ALGEBRAS
,
NICHOLS ALGEBRAS
,
QUANTUM DETERMINANTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
García, Gastón Andrés; Farinati, Marco Andrés; Quantum function algebras from finite-dimensional Nichols algebras; European Mathematical Society; Journal of Noncommutative Geometry; 14; 3; 10-2020; 879-911
Compartir
Altmétricas