Mostrar el registro sencillo del ítem

dc.contributor.author
Curiale, Ariel Hernán  
dc.contributor.author
Calandrelli, Matías Enrique  
dc.contributor.author
Dellazoppa, Lucca  
dc.contributor.author
Trevisan, Mariano  
dc.contributor.author
Bocián, Jorge Luis  
dc.contributor.author
Bonifacio, Juan Pablo  
dc.contributor.author
Mato, German  
dc.date.available
2022-05-16T17:26:18Z  
dc.date.issued
2021-10  
dc.identifier.citation
Curiale, Ariel Hernán; Calandrelli, Matías Enrique; Dellazoppa, Lucca; Trevisan, Mariano; Bocián, Jorge Luis; et al.; Cuantificación automática de los volúmenes y función de ambos ventrículos en resonancia cardíaca: Propuesta y evaluación de un método de inteligencia artificial; Sociedad Argentina de Cardiología; Revista Argentina de Cardiología; 89; 4; 10-2021; 1-5  
dc.identifier.issn
0034-7000  
dc.identifier.uri
http://hdl.handle.net/11336/157647  
dc.description.abstract
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons. Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods. Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors. Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantifica- tion of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study. Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.  
dc.description.abstract
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons. Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods. Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors. Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantification of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study. Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Argentina de Cardiología  
dc.relation
http://www.old2.sac.org.ar/wp-content/uploads/2021/10/v89n4a12s.pdf  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Deep Learning  
dc.subject
Heart Diseases  
dc.subject
Diagnostic Imaging  
dc.subject
Magnetic Resonance Imaging  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Medicina Básica  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Cuantificación automática de los volúmenes y función de ambos ventrículos en resonancia cardíaca: Propuesta y evaluación de un método de inteligencia artificial  
dc.title
Automatic Quantification of Volumes and Biventricular Function in Cardiac Resonance: Validation of a New Artificial Intelligence Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-01-25T14:35:47Z  
dc.identifier.eissn
1850-3748  
dc.journal.volume
89  
dc.journal.number
4  
dc.journal.pagination
1-5  
dc.journal.pais
Argentina  
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires  
dc.description.fil
Fil: Curiale, Ariel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Calandrelli, Matías Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Dellazoppa, Lucca. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina  
dc.description.fil
Fil: Trevisan, Mariano. Provincia de Río Negro. Sanatorio San Carlos; Argentina  
dc.description.fil
Fil: Bocián, Jorge Luis. Provincia de Río Negro. Sanatorio San Carlos; Argentina  
dc.description.fil
Fil: Bonifacio, Juan Pablo. Provincia de Río Negro. Sanatorio San Carlos; Argentina  
dc.description.fil
Fil: Mato, German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina. Provincia de Río Negro. Sanatorio San Carlos; Argentina  
dc.journal.title
Revista Argentina de Cardiología  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.old2.sac.org.ar/revista-argentina-de-cardiologia/?texto=Cuantificaci%C3%B3n+autom%C3%A1tica&autor=&secciones=tipoDeSecci%C3%B3n&periodo=  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7775/rac.es.v89.i4.20427