Mostrar el registro sencillo del ítem
dc.contributor.author
Curiale, Ariel Hernán
dc.contributor.author
Calandrelli, Matías Enrique
dc.contributor.author
Dellazoppa, Lucca
dc.contributor.author
Trevisan, Mariano
dc.contributor.author
Bocián, Jorge Luis
dc.contributor.author
Bonifacio, Juan Pablo
dc.contributor.author
Mato, German
dc.date.available
2022-05-16T17:26:18Z
dc.date.issued
2021-10
dc.identifier.citation
Curiale, Ariel Hernán; Calandrelli, Matías Enrique; Dellazoppa, Lucca; Trevisan, Mariano; Bocián, Jorge Luis; et al.; Cuantificación automática de los volúmenes y función de ambos ventrículos en resonancia cardíaca: Propuesta y evaluación de un método de inteligencia artificial; Sociedad Argentina de Cardiología; Revista Argentina de Cardiología; 89; 4; 10-2021; 1-5
dc.identifier.issn
0034-7000
dc.identifier.uri
http://hdl.handle.net/11336/157647
dc.description.abstract
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons.
Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods.
Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors.
Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantifica- tion of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study.
Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.
dc.description.abstract
Background: Artificial intelligence techniques have shown great potential in cardiology, especially in quantifying cardiac biventricular function, volume, mass, and ejection fraction (EF). However, its use in clinical practice is not straightforward due to its poor reproducibility with cases from daily practice, among other reasons.
Objectives: To validate a new artificial intelligence tool in order to quantify the cardiac biventricular function (volume, mass, and EF). To analyze its robustness in the clinical area, and the computational times compared with conventional methods.
Methods: A total of 189 patients were analyzed: 89 from a regional center and 100 from a public center. The method proposes two convolutional networks that include anatomical information of the heart to reduce classification errors.
Results: A high concordance (Pearson coefficient) was observed between manual quantification and the proposed quantification of cardiac function (0.98, 0.92, 0.96 and 0.8 for volumes and biventricular EF) in about 5 seconds per study.
Conclusions: This method quantifies biventricular function and volumes in seconds with an accuracy equivalent to that of a specialist.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sociedad Argentina de Cardiología
dc.relation
http://www.old2.sac.org.ar/wp-content/uploads/2021/10/v89n4a12s.pdf
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Deep Learning
dc.subject
Heart Diseases
dc.subject
Diagnostic Imaging
dc.subject
Magnetic Resonance Imaging
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Otras Medicina Básica
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Cuantificación automática de los volúmenes y función de ambos ventrículos en resonancia cardíaca: Propuesta y evaluación de un método de inteligencia artificial
dc.title
Automatic Quantification of Volumes and Biventricular Function in Cardiac Resonance: Validation of a New Artificial Intelligence Approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-01-25T14:35:47Z
dc.identifier.eissn
1850-3748
dc.journal.volume
89
dc.journal.number
4
dc.journal.pagination
1-5
dc.journal.pais
Argentina
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires
dc.description.fil
Fil: Curiale, Ariel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Calandrelli, Matías Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.description.fil
Fil: Dellazoppa, Lucca. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Universidad Nacional de Cuyo; Argentina
dc.description.fil
Fil: Trevisan, Mariano. Provincia de Río Negro. Sanatorio San Carlos; Argentina
dc.description.fil
Fil: Bocián, Jorge Luis. Provincia de Río Negro. Sanatorio San Carlos; Argentina
dc.description.fil
Fil: Bonifacio, Juan Pablo. Provincia de Río Negro. Sanatorio San Carlos; Argentina
dc.description.fil
Fil: Mato, German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina. Provincia de Río Negro. Sanatorio San Carlos; Argentina
dc.journal.title
Revista Argentina de Cardiología
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.old2.sac.org.ar/revista-argentina-de-cardiologia/?texto=Cuantificaci%C3%B3n+autom%C3%A1tica&autor=&secciones=tipoDeSecci%C3%B3n&periodo=
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7775/rac.es.v89.i4.20427
Archivos asociados