Mostrar el registro sencillo del ítem

dc.contributor.author
Bottazzi, Tamara Paula  
dc.contributor.author
Varela, Alejandro  
dc.date.available
2022-05-14T01:17:38Z  
dc.date.issued
2021-08  
dc.identifier.citation
Bottazzi, Tamara Paula; Varela, Alejandro; Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C; Elsevier Science; Differential Geometry and its Applications; 77; 8-2021; 1-15  
dc.identifier.issn
0926-2245  
dc.identifier.uri
http://hdl.handle.net/11336/157556  
dc.description.abstract
In the present paper, we study the unitary orbit of a compact Hermitian diagonal operator with spectral multiplicity one under the action of the unitary group U(K+C) of the unitization of the compact operators K(H) + C, or equivalently, the quotient U(K+C) /U(D(K+C)) . We relate this and the action of different unitary subgroups to describe metric geodesics (using a natural distance) which join end points. As a consequence we obtain a local Hopf-Rinow theorem. We also explore cases about the uniqueness of short curves and prove that there exist some of these that cannot be parameterized using minimal anti-Hermitian operators of K(H) + C.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
UNITARY ORBITS  
dc.subject
GEODESIC CURVES  
dc.subject
MINIMALITY  
dc.subject
FINSLER METRICS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Geodesic neighborhoods in unitary orbits of self-adjoint operators of K + C  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-05-12T06:30:08Z  
dc.journal.volume
77  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina  
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Differential Geometry and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000620  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2021.101778  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1904.03650