Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Extended Hamilton-Jacobi Theory, Symmetries and Integrability by Quadratures

Grillo, Sergio DanielIcon ; Marrero, Juan Carlos; Padrón, Edith
Fecha de publicación: 06/2021
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Mathematics
ISSN: 2227-7390
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper, we study the extended Hamilton–Jacobi Theory in the context of dynamical systems with symmetries. Given an action of a Lie group G on a manifold M and a G-invariant vector field X on M, we construct complete solutions of the Hamilton–Jacobi equation (HJE) related to X (and a given fibration on M). We do that along each open subset U⊆M, such that π(U) has a manifold structure and π|U:U→π(U), the restriction to U of the canonical projection π:M→M/G, is a surjective submersion. If X|U is not vertical with respect to π|U, we show that such complete solutions solve the reconstruction equations related to X|U and G, i.e., the equations that enable us to write the integral curves of X|U in terms of those of its projection on π(U). On the other hand, if X|U is vertical, we show that such complete solutions can be used to construct (around some points of U) the integral curves of X|U up to quadratures. To do that, we give, for some elements ξ of the Lie algebra g of G, an explicit expression up to quadratures of the exponential curve exp(ξt), different to that appearing in the literature for matrix Lie groups. In the case of compact and of semisimple Lie groups, we show that such expression of exp(ξt) is valid for all ξ inside an open dense subset of g.
Palabras clave: Hamilton–Jacobi Theory , Lie group , Symplectic geometry , Integrability by quadratures , First integrals , Quadratures , Reconstruction , Lie group exponential map
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 476.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/157388
URL: https://www.mdpi.com/2227-7390/9/12/1357
DOI: https://doi.org/10.3390/math9121357
URL: https://arxiv.org/abs/2105.02130
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Grillo, Sergio Daniel; Marrero, Juan Carlos; Padrón, Edith; Extended Hamilton-Jacobi Theory, Symmetries and Integrability by Quadratures; Multidisciplinary Digital Publishing Institute; Mathematics; 9; 12; 6-2021; 1-34
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES