Mostrar el registro sencillo del ítem
dc.contributor.author
González Fá, Alejandro Javier
dc.contributor.author
Faccio, Ricardo
dc.contributor.author
López Corral, Ignacio
dc.date.available
2022-05-11T12:17:06Z
dc.date.issued
2021-02-01
dc.identifier.citation
González Fá, Alejandro Javier; Faccio, Ricardo; López Corral, Ignacio; Detection of SOF2 and SO2F2 through aluminium nitride nanosheets: A DFT study; Elsevier Science; Applied Surface Science; 538; 1-2-2021; 1-10
dc.identifier.issn
0169-4332
dc.identifier.uri
http://hdl.handle.net/11336/157181
dc.description.abstract
Detection of sulfuryl fluoride (SO2F2) and thionyl fluoride (SOF2) can be used to find out the degradation of sulfur hexafluoride (SF6), indicating gas insulation switchgear equipment failures. In the present work, we study through first-principle DFT calculations the SOF2 and SO2F2 adsorption on aluminium nitride nanosheets (AlNNS), with the aim of to evaluate the performance of this nanomaterial as gas sensor. First, we performed an energetic, geometric and bonding analysis, obtaining considerable adsorption energy values for SO2F2 and SOF2 (−1.63 and −1.93 eV, respectively), which suggests these gases are chemisorbed on the AlN surface. Furthermore, certain S−F bonds were broken during adsorption, while new Al−F and S−N overlaps were developed. Simultaneously, an important weakening was observed for Al−N bonds close to the adsorption site. The adsorption selectivity of AlNNS toward SO2F2 and SOF2 was also studied, noting that other molecules normally present in air show a lower reactivity.Band structure and electronic density of states were realized in order to evaluate the sensing capacity of AlNNS surface. The obtained plots show a notorious narrowing of the band gap after gas adsorption, particularly in the case of SOF2, so an important change in the conductivity of AlNNS could be expected during gas exposition. Charge density analysis reveals an important charge transfer from AlNNS to both adsorbed gases, which suggest that this nanomaterial could behave as an n-type semiconductor. These results seem to indicate that AlNNS could act with good sensibility and selectivity for SOF2 and SO2F2 detection, showing high potential as gas sensing material.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SF6 DECOMPOSITION GASES
dc.subject
ALUMINIUM NITRIDE NANOSHEETS
dc.subject
ADSORPTION
dc.subject
DENSITY FUNCTIONAL THEORY
dc.subject
BONDING
dc.subject
GAS SENSOR
dc.subject.classification
Química Inorgánica y Nuclear
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Detection of SOF2 and SO2F2 through aluminium nitride nanosheets: A DFT study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-21T17:56:51Z
dc.journal.volume
538
dc.journal.pagination
1-10
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: González Fá, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Faccio, Ricardo. Universidad de la República. Facultad de Química; Uruguay
dc.description.fil
Fil: López Corral, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Applied Surface Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169433220326568
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.apsusc.2020.147899
Archivos asociados