Mostrar el registro sencillo del ítem

dc.contributor.author
Eyre, Max T.  
dc.contributor.author
Carvalho Pereira, Ticiana S. A.  
dc.contributor.author
Souza, Fábio N.  
dc.contributor.author
Khalil, Hussein  
dc.contributor.author
Hacker, Kathryn P.  
dc.contributor.author
Serrano, Laura Soledad  
dc.contributor.author
Taylor, Joshua Paul  
dc.contributor.author
Reis, Mitermayer G.  
dc.contributor.author
Ko, Albert I.  
dc.contributor.author
Begon, Mike  
dc.contributor.author
Diggle, Peter J.  
dc.contributor.author
Costa, Federico  
dc.contributor.author
Giorgi, Emanuele  
dc.date.available
2022-05-10T12:28:28Z  
dc.date.issued
2020-09  
dc.identifier.citation
Eyre, Max T.; Carvalho Pereira, Ticiana S. A.; Souza, Fábio N.; Khalil, Hussein; Hacker, Kathryn P.; et al.; A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community; The Royal Society; Journal of the Royal Society Interface; 17; 170; 9-2020; 1-21  
dc.identifier.issn
1742-5689  
dc.identifier.uri
http://hdl.handle.net/11336/157048  
dc.description.abstract
A key requirement in studies of endemic vector-borne or zoonotic disease is an estimate of the spatial variation in vector or reservoir host abundance. For many vector species, multiple indices of abundance are available, but current approaches to choosing between or combining these indices do not fully exploit the potential inferential benefits that might accrue from modelling their joint spatial distribution. Here, we develop a class of multivariate generalized linear geostatistical models for multiple indices of abundance. We illustrate this novel methodology with a case study on Norway rats in a low-income urban Brazilian community, where rat abundance is a likely risk factor for human leptospirosis. We combine three indices of rat abundance to draw predictive inferences on a spatially continuous latent process, rattiness, that acts as a proxy for abundance. We show how to explore the association between rattiness and spatially varying environmental factors, evaluate the relative importance of each of the three contributing indices and assess the presence of residual, unexplained spatial variation, and identify rattiness hotspots. The proposed methodology is applicable more generally as a tool for understanding the role of vector or reservoir host abundance in predicting spatial variation in the risk of human disease.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
The Royal Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ABUNDANCE INDICES  
dc.subject
EPIDEMIOLOGY  
dc.subject
LEPTOSPIROSIS  
dc.subject
MULTIVARIATE MODEL-BASED GEOSTATISTICS  
dc.subject
NORWAY RAT  
dc.subject
ZOONOTIC AND VECTOR-BORNE DISEASES  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:54:58Z  
dc.identifier.eissn
1742-5662  
dc.journal.volume
17  
dc.journal.number
170  
dc.journal.pagination
1-21  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Eyre, Max T.. Universidad de Lancaster. Facultad de Salud y Medicina. ; Reino Unido. University of Liverpool; Reino Unido  
dc.description.fil
Fil: Carvalho Pereira, Ticiana S. A.. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Souza, Fábio N.. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Khalil, Hussein. Universidade Federal da Bahia; Brasil. Universidad de Ciencias Agrícolas de Suecia; Suecia  
dc.description.fil
Fil: Hacker, Kathryn P.. University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Serrano, Laura Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Taylor, Joshua Paul. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina  
dc.description.fil
Fil: Reis, Mitermayer G.. Fundación Oswaldo Cruz; Brasil. Universidade Federal da Bahia; Brasil  
dc.description.fil
Fil: Ko, Albert I.. University of Yale; Estados Unidos. Fundación Oswaldo Cruz; Brasil  
dc.description.fil
Fil: Begon, Mike. University of Liverpool; Reino Unido  
dc.description.fil
Fil: Diggle, Peter J.. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido  
dc.description.fil
Fil: Costa, Federico. University of Yale; Estados Unidos. Universidade Federal da Bahia; Brasil. Fundación Oswaldo Cruz; Brasil  
dc.description.fil
Fil: Giorgi, Emanuele. Universidad de Lancaster. Facultad de Salud y Medicina.; Reino Unido  
dc.journal.title
Journal of the Royal Society Interface  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1098/rsif.2020.0398  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://royalsocietypublishing.org/doi/10.1098/rsif.2020.0398