Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Algebraic methods for the study of biochemical reaction networks

Título del libro: Applications of polynomial systems

Dickenstein, Alicia MarcelaIcon
Otros responsables: Cox, David
Fecha de publicación: 2020
Editorial: American Mathematical Society
ISBN: 978-1-4704-5137-0
Idioma: Inglés
Clasificación temática:
Matemática Aplicada

Resumen

We will concentrate on biochemical reaction networks, of interest in systems biology, in particular enzymatic networks, consisting of different types of multisite phosphorylation networks. One source of inspiration for our study with algebro-geometric tools is the following quote from the abstract of the paper [44]:"Multisite phosphorylation cycles are ubiquitous in cell regulation systems andare studied at multiple levels of complexity, from molecules to organisms, withthe ultimate goal of establishing predictive understanding of the effects of geneticand pharmacological perturbations of protein phosphorylation in vivo. Achievingthis goal is essentially impossible without mathematical models, which providea systematic framework for exploring dynamic interactions of multiple networkcomponents."We will mainly concentrate on recent advances on the determination of multistationarity for these networks, whose dynamics are usually modeled with mass-action kinetics. For many classes of chemical networks, as the complex balanced networks, monostationarity is an important property. Instead, for biochemical reaction networks, that is, chemical reaction networks modeling pathways in systems biology, multistationarity is a general feature and it is important because it is intepreted as a way for the cell to take different decisions. Indeed, differential systems with mass-action kinetics are deterministic. But the occurrence of multiple stable steady states in the same stoichiometric compatibility class implies that trajectories starting from different initial conditions with the same conserved quantities can converge to steady states with different properties. We will end the chapter with some open questions.
Palabras clave: REACTION NETWORKS , BIOCHEMISTRY , ALGEBRA , MULTISTATIONARITY
Ver el registro completo
 
Archivos asociados
Tamaño: 9.543Mb
Formato: PDF
.
 
Licencia
info:eu-repo/semantics/closedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/156851
URL: https://bookstore.ams.org/cbms-134#:~:text=Examples%20in%20the%20book%20include,
Colecciones
Capítulos de libros(IMAS)
Capítulos de libros de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dickenstein, Alicia Marcela; Algebraic methods for the study of biochemical reaction networks; American Mathematical Society; 134; 2020; 222-233
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES