Artículo
Multisite-occupancy adsorption and surface diffusion of linear adsorbates in low dimensions: Rigurous results for a lattice gas model
Fecha de publicación:
05/2000
Editorial:
American Chemical Society
Revista:
Langmuir
ISSN:
0743-7463
e-ISSN:
1520-5827
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The rigorous statistical thermodynamics of interacting linear adsorbates (k-mers) on a discrete onedimensional space is presented in the lattice gas approximation. The coverage and temperature dependence of the Helmholtz free energy, chemical potential, entropy, and specific heat are given. The chemical diffusion coefficient of the adlayer is calculated through collective relaxation of density fluctuations. Transport properties are discussed and related to features of the configurational entropy. The correspondence of the present model to adsorption in one-dimensional nanopores is addressed.k-mers) on a discrete onedimensional space is presented in the lattice gas approximation. The coverage and temperature dependence of the Helmholtz free energy, chemical potential, entropy, and specific heat are given. The chemical diffusion coefficient of the adlayer is calculated through collective relaxation of density fluctuations. Transport properties are discussed and related to features of the configurational entropy. The correspondence of the present model to adsorption in one-dimensional nanopores is addressed.
Palabras clave:
Lattice gas model
,
Thermodynamics
,
Linear adsorbates
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Ramirez Pastor, Antonio Jose; Romá, Federico José; Aligia, Armando Angel; Riccardo, Jose Luis; Multisite-occupancy adsorption and surface diffusion of linear adsorbates in low dimensions: Rigurous results for a lattice gas model; American Chemical Society; Langmuir; 16; 11; 5-2000; 5100-5105
Compartir
Altmétricas