Mostrar el registro sencillo del ítem

dc.contributor.author
Revollo Sarmiento, Natalia Veronica  
dc.contributor.author
Thomsen, Felix Sebastian Leo  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
González José, Rolando  
dc.date.available
2022-05-05T15:53:01Z  
dc.date.issued
2020  
dc.identifier.citation
Supervised learning for semantic segmentation of human spermatozoa; 15th International Symposium on Medical Information Processing and Analysis; Medellín; Colombia; 2019; 1-8  
dc.identifier.uri
http://hdl.handle.net/11336/156650  
dc.description.abstract
Image-based diagnosis is able to spot several diseases and clinical conditions faster and more accurately than traditional manual ones, becoming also an alternative in monitoring and predicting patients responses to specific health treatments. In this work, we present a supervised learning approach to segment pixel-wise parts of spermatozoa using a random forest (RF) classifier. The framework created a multi-channel image combining intensity RGB bands with three neighborhood based bands. The last neighborhood based bands were Sobel’s magnitude and orientation and Shannon’s entropy. A RF was trained using labeled pixels provided by expert andrologists, biochemists and specialists in reproductive health. We compared results with a simple model on the RGB only. The whole automatic process (segmentation and classification) achieved an average precision of 98%, recall of 98% and F-Score of 98%. Highest improvement in comparison to the RGB model was shown on the segmentation of the tail. We provided a fully automatic spermatozoa semantic segmentation based on local and non-local information. The results are aimed to develop a CASA (Computer Assisted Sperm Analysis) system that can provide results over the Internet. The experiment was conducted on normalized images of a specific microscope. We are planning to extend the experiment in future work to more realistic conditions including different stainings, microscopes and resolutions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Spie  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SPERMATOZOA SEGMENTATION  
dc.subject
ANDROLOGICAL ANALYSIS  
dc.subject
SPERM  
dc.subject
IMAGE PROCESSING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Supervised learning for semantic segmentation of human spermatozoa  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-03-16T20:14:42Z  
dc.journal.volume
11330  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Bellingham  
dc.description.fil
Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina  
dc.description.fil
Fil: Thomsen, Felix Sebastian Leo. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina  
dc.description.fil
Fil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1117/12.2542464  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Simposio  
dc.description.nombreEvento
15th International Symposium on Medical Information Processing and Analysis  
dc.date.evento
2019-11-06  
dc.description.ciudadEvento
Medellín  
dc.description.paisEvento
Colombia  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
The International Society of Optics and Photonics Search  
dc.source.libro
15th International Symposium on Medical Information Processing and Analysis  
dc.date.eventoHasta
2019-11-08  
dc.type
Simposio