Mostrar el registro sencillo del ítem
dc.contributor.author
Groshaus, Marina Esther
dc.contributor.author
Montero, Leandro Pedro
dc.date.available
2017-04-24T18:07:20Z
dc.date.issued
2013-06
dc.identifier.citation
Groshaus, Marina Esther; Montero, Leandro Pedro; Covergence and divergence of the iterated biclique graph; Wiley; Journal Of Graph Theory; 73; 2; 6-2013; 181-190
dc.identifier.issn
0364-9024
dc.identifier.uri
http://hdl.handle.net/11336/15646
dc.description.abstract
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bicliques
dc.subject
Biclique Graphs
dc.subject
Clique Graphs
dc.subject
Divergent Graphs
dc.subject
Iterated Graph Operators
dc.subject
Graph Dynamics
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Covergence and divergence of the iterated biclique graph
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-04-24T14:49:11Z
dc.journal.volume
73
dc.journal.number
2
dc.journal.pagination
181-190
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Hoboken
dc.description.fil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal Of Graph Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jgt.21666
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/jgt.21666/abstract
Archivos asociados