Mostrar el registro sencillo del ítem

dc.contributor.author
Groshaus, Marina Esther  
dc.contributor.author
Montero, Leandro Pedro  
dc.date.available
2017-04-24T18:07:20Z  
dc.date.issued
2013-06  
dc.identifier.citation
Groshaus, Marina Esther; Montero, Leandro Pedro; Covergence and divergence of the iterated biclique graph; Wiley; Journal Of Graph Theory; 73; 2; 6-2013; 181-190  
dc.identifier.issn
0364-9024  
dc.identifier.uri
http://hdl.handle.net/11336/15646  
dc.description.abstract
A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The biclique graph of G, denoted by KB(G), is the intersection graph of the bicliques of G. We say that a graph G diverges (or converges or is periodic) under an operator F whenever limk→∞ |V (F k (G))| = ∞ (limk→∞ F k (G) = F m(G) for some m, or F k (G) = F k+s(G) for some k and s ≥ 2, respectively). Given a graph G, the iterated biclique graph of G, denoted by KBk (G), is the graph obtained by applying the biclique operator k successive times to G. In this article, we study the iterated biclique graph of G. In particular, we classify the different behaviors of KBk (G) when the number of iterations k grows to infinity. That is, we prove that a graph either diverges or converges under the biclique operator. We give a forbidden structure characterization of convergent graphs, which yield a polynomial time algorithm to decide if a given graph diverges or converges. This is in sharp contrast with the situsation for the better known clique operator, where it is not even known if the corresponding problem is decidable.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bicliques  
dc.subject
Biclique Graphs  
dc.subject
Clique Graphs  
dc.subject
Divergent Graphs  
dc.subject
Iterated Graph Operators  
dc.subject
Graph Dynamics  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Covergence and divergence of the iterated biclique graph  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-04-24T14:49:11Z  
dc.journal.volume
73  
dc.journal.number
2  
dc.journal.pagination
181-190  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hoboken  
dc.description.fil
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Montero, Leandro Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal Of Graph Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jgt.21666  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/jgt.21666/abstract