Artículo
Feasible analysis, randomness, and base invariance
Fecha de publicación:
04/2015
Editorial:
Springer
Revista:
Theory Of Computing Systems
ISSN:
1432-4350
e-ISSN:
1433-0490
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We show that polynomial time randomness of a real number does not depend on the choice of a base for representing it. Our main tool is an ‘almost Lipschitz’ condition that we show for the cumulative distribution function associated to martingales with the savings property. Based on a result of Schnorr, we prove that for any base r, n⋅log2n-randomness in base r implies normality in base r, and that n4-randomness in base r implies absolute normality. Our methods yield a construction of an absolutely normal real number which is computable in polynomial time.
Palabras clave:
Base Invariance
,
Polynomial Time Randomness
,
Analysis
,
Normality
,
Martingales
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Figueira, Santiago; Nies, André; Feasible analysis, randomness, and base invariance; Springer; Theory Of Computing Systems; 56; 3; 4-2015; 439-464
Compartir
Altmétricas