Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz, Juan Pablo  
dc.contributor.author
Jagla, Jan H.  
dc.contributor.author
Grossmann, Ignacio E.  
dc.contributor.author
Meeraus, Alex  
dc.contributor.author
Vecchietti, Aldo  
dc.contributor.other
Kallrath, Joseph  
dc.date.available
2022-05-03T11:06:02Z  
dc.date.issued
2012  
dc.identifier.citation
Ruiz, Juan Pablo; Jagla, Jan H.; Grossmann, Ignacio E.; Meeraus, Alex; Vecchietti, Aldo; Generalized disjunctive programming: Solution strategies; Springer Verlag Berlín; 104; 2012; 57-75  
dc.identifier.isbn
978-3-642-23591-7  
dc.identifier.uri
http://hdl.handle.net/11336/156317  
dc.description.abstract
Generalized disjunctive programming (GDP) is an extension of the disjunctive programming paradigm developed by Balas. The GDP formulation involves Boolean and continuous variables that are specified in algebraic constraints, disjunctions and logic propositions, which is an alternative representation to the traditional algebraic mixed-integer programming formulation. GDP has proven to be very useful in representing a wide variety of problems successfully. Even though a wealth of powerful algorithms exist to solve these problems, GDP suffers a lack of mature solver technology. The main goal of this paper is to review the basic concepts and algorithms related to GDP problems and describe how solver technology is being developed. With this in mind after providing a brief review of MINLP optimization, we present an overview of GDP for the case of convex functions emphasizing the quality of continuous relaxations of alternative reformulations that include the big-M and the hull relaxation. We then review disjunctive branch and bound as well as logic-based decomposition methods that circumvent some of the limitations in traditional MINLP optimization. The first implemented GDP solver LogMIP successfully demonstrated that formulating and solving such problems can be done in an algebraic modeling system like GAMS. Recently, LogMIP has been introduced into GAMS’ Extended Mathematical Programming (EMP) framework integrating it much closer into the GAMS system and language and at the same time offering much more flexibility to the user. Since the model is separated from the reformulation chosen and from the solver used to solve the automatically generated model, this setup allows to easily switch methods at no costs and to benefit from advancing solver technology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GENERALIZED DISJUNCTIVE PROGRAMMING  
dc.subject
SOLVERS  
dc.subject
SOLUTION STRATEGIES  
dc.subject
LOGMIP  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Generalized disjunctive programming: Solution strategies  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-06-07T16:47:53Z  
dc.journal.volume
104  
dc.journal.pagination
57-75  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Ruiz, Juan Pablo. University of Carnegie Mellon; Estados Unidos  
dc.description.fil
Fil: Jagla, Jan H.. No especifíca;  
dc.description.fil
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos  
dc.description.fil
Fil: Meeraus, Alex. No especifíca;  
dc.description.fil
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-642-23592-4_4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/978-3-642-23592-4_4  
dc.conicet.paginas
236  
dc.source.titulo
Algebraic Modeling Systems: Modeling and Solving Real World Optimization Problems  
dc.conicet.nroedicion
1