Artículo
The least prime in certain arithmetic progressions
Fecha de publicación:
12/2009
Editorial:
Mathematical Association of America
Revista:
The American Mathematical Monthly
ISSN:
0002-9890
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Dirichlet’s theorem states that, if a and n are relatively prime integers, there are infinitely many primes in the arithmetic progression n + a, 2n + a, 3n + a,.... However, the known proofs of this general result are not elementary (see [1, 10, 12], for example). Linnik [4, 5] proved that, if 1 ≤ a < n, there are absolute constants c1 and c2 so that the least prime p in such a progression satisfies p ≤ c1nc2 , but his proof is not elementary either. There are several different proofs of Dirichlet’s theorem for the particular case a = 1 (see for example [2, 6, 9, 11]). In [7], moreover, the bound p < n3n for the least prime satisfying p ≡ 1 (mod n) is given. Our aim is to use an elementary argument, which also shows that there are infinitely many primes ≡ 1 (mod n), to prove that the least such prime lies below (3n − 1)/2.
Palabras clave:
PRIME NUMBERS
,
ARITHMETIC PROGRESSIONS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Sabia, Juan Vicente Rafael; Tesauri, Susana; The least prime in certain arithmetic progressions; Mathematical Association of America; The American Mathematical Monthly; 116; 7; 12-2009; 641-643
Compartir
Altmétricas