Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A BCS microwave imaging algorithm for object detection and shape reconstruction tested with experimental data

Zilberstein, Nicolás; Maya, Juan AugustoIcon ; Altieri, Andrés OscarIcon
Fecha de publicación: 01/2021
Editorial: Institution of Engineering and Technology
Revista: Electronics Letters
ISSN: 0013-5194
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

An approach based on the Green function and the Born approximation is used for impulsive radio ultra-wideband (UWB) microwave imaging, in which a permittivity map of the illuminated scenario is estimated using the scattered fields measured at several positions. Two algorithms are applied to this model and compared: the first one solves the inversion problem using a linear operator. The second one is based on the Bayesian compressive sensing (BCS) technique, where the sparseness of the contrast function is introduced as extit{a priori} knowledge in order to improve the inverse mapping. In order to compare both methods, measurements in real scenarios are taken using an UWB radar prototype. The results with real measurements illustrate that, for the considered scenarios, the BCS imaging algorithm has a better performance in terms of range and cross-range resolution allowing object detection and shape reconstruction, with a reduced computational burden, and fewer space and frequency measurements, as compared to the linear operator.
Palabras clave: MICROWAVE IMAGING , UTRA WIDEBAND RADAR , BAYESSIAN COMPRESSIVE SENSING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 850.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/156194
URL: https://onlinelibrary.wiley.com/doi/10.1049/ell2.12059
DOI: http://dx.doi.org/10.1049/ell2.12059
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Zilberstein, Nicolás; Maya, Juan Augusto; Altieri, Andrés Oscar; A BCS microwave imaging algorithm for object detection and shape reconstruction tested with experimental data; Institution of Engineering and Technology; Electronics Letters; 57; 2; 1-2021; 88-91
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES