Mostrar el registro sencillo del ítem

dc.contributor.author
Bento, Anderson  
dc.contributor.author
Oliveira, Lucas  
dc.contributor.author
Rubio Scola, Ignacio Eduardo Jesus  
dc.contributor.author
de Souza Leite, Valter Junior  
dc.contributor.author
Gomide, Fernando  
dc.date.available
2022-04-29T18:00:46Z  
dc.date.issued
2020-07  
dc.identifier.citation
Bento, Anderson; Oliveira, Lucas; Rubio Scola, Ignacio Eduardo Jesus; de Souza Leite, Valter Junior; Gomide, Fernando; Evolving granular control with high-gain observers for feedback linearizable nonlinear systems; Springer; Evolving Systems; 12; 4; 7-2020; 935-948  
dc.identifier.issn
1868-6486  
dc.identifier.uri
http://hdl.handle.net/11336/156145  
dc.description.abstract
Feedback linearization control is a simple and effective strategy whenever a faithful model of the system and its states are available. Feedback linearization may suffer from the mismatches between the model used in the design and the actual system due to e.g. uncertain parameter values, parasitic dynamics, or because of the impossibility to measure some states of the system. To aleviate such an issue, we suggest a novel robust adaptive control approach using the evolving participatory learning algorithm together with a high-gain observer. The robust evolving granular high-gain observers (RegHGO) controller is suitable to control nonlinear systems that can be input-output linearized by feedback. The approach is robust to modeling mismatches and does not require full state availability because, once the system is in a suitable canonical form, a high gain observer can be constructed to supply the state information required for control. The usefulness and efficacy of the approach is shown using a fan and plate system, and an DC motor driven angular arm-position control. The fan and plate evaluates the controller in a regulation process, and the angular arm position control evaluates reference tracking perfromance. In both cases, time-varying parameter uncertainties disturb the closed-loop control system. Both, qualitative and quantitative performance evaluation of the RegHGO controller are done. Additionally, we compare the performance of the RegHGO controller with well-established methods such as exact feedback linearization with high-gain state observer and extensions. The results show that robust evolving granular control with high-gain observers achieves better performance than its counterparts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
HIGH-GAIN OBSERVERS  
dc.subject
EVOLVING SYSTEMS  
dc.subject
ADAPTIVE FEEDBACK LINEARIZATION  
dc.subject
ROBUST CONTROL  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Evolving granular control with high-gain observers for feedback linearizable nonlinear systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-05T16:38:15Z  
dc.journal.volume
12  
dc.journal.number
4  
dc.journal.pagination
935-948  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Bento, Anderson. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Oliveira, Lucas. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Rubio Scola, Ignacio Eduardo Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: de Souza Leite, Valter Junior. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Gomide, Fernando. Universidade Estadual de Campinas; Brasil  
dc.journal.title
Evolving Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s12530-020-09349-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12530-020-09349-y