Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning

Luna, Martín FranciscoIcon ; Ochsner, Andrea M.; Amstutz, Véronique; von Blarer, Damian; Sokolov, Michael; Arosio, Paolo; Zinn, Manfred
Fecha de publicación: 01/09/2021
Editorial: MDPI
Revista: Processes
ISSN: 2227-9717
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biotecnología Industrial

Resumen

Polyhydroxyalkanoates (PHA) are renewable alternatives to traditional oil-derived poly-mers. PHA can be produced by different microorganisms in continuous culture under specific media composition, which makes the production process both promising and challenging. In order to achieve large productivities while maintaining high yield and efficiency, the continuous culture needs to be operated in the so-called dual nutrient limitation condition, where both the nitrogen and carbon sources are kept at very low concentrations. Mathematical models can greatly assist both design and operation of the bioprocess, but are challenged by the complexity of the system, in particular by the dual nutrient-limited growth phenomenon, where the cells undergo a metabolic shift that abruptly changes their behavior. Traditional, non-structured mechanistic models based on Monod uptake kinetics can be used to describe the bioreactor operation under specific process conditions. However, in the absence of a model description of the metabolic phenomena inside the cell, the extrapolation to a broader operation domain (e.g., different feeding concentrations and dilution rates) may present mismatches between the predictions and the actual process outcomes. Such detailed models may require almost perfect knowledge of the cell metabolism and omic-level measurements, hampering their development. On the other hand, purely data-driven models that learn correlations from experimental data do not require any prior knowledge of the process and are therefore unbiased and flexible. However, many more data are required for their development and their extrapolation ability is limited to conditions that are similar to the ones used for training. An attractive alternative is the combination of the extrapolation power of first principles knowledge with the flexibility of machine learning methods. This approach results in a hybrid model for the growth and uptake rates that can be used to predict the dynamic operation of the bioreactor. Here we develop a hybrid model to describe the continuous production of PHA by Pseudomonas putida GPo1 culture. After training, the model with experimental data gained under different dilution rates and medium compositions, we demonstrate how the model can describe the process in a wide range of operating conditions, including both single and dual nutrient-limited growth.
Palabras clave: BIOPROCESS MODELLING , FIL- ARTIFICIAL INTELLIGENCE , HYBRID MODELS , MACHINE LEARNING , PHA PRODUCTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.473Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/156119
DOI: http://dx.doi.org/10.3390/pr9091560
URL: https://www.mdpi.com/2227-9717/9/9/1560
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Luna, Martín Francisco; Ochsner, Andrea M.; Amstutz, Véronique; von Blarer, Damian; Sokolov, Michael; et al.; Modeling of continuous PHA production by a hybrid approach based on first principles and machine learning; MDPI; Processes; 9; 9; 1-9-2021; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES