Mostrar el registro sencillo del ítem

dc.contributor.author
Aldana, Ana Agustina  
dc.contributor.author
Valente, Filippo  
dc.contributor.author
Dilley, Rodney  
dc.contributor.author
Doyle, Barry  
dc.date.available
2022-04-28T11:46:23Z  
dc.date.issued
2021-03  
dc.identifier.citation
Aldana, Ana Agustina; Valente, Filippo; Dilley, Rodney; Doyle, Barry; Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties; Elsevier; Bioprinting; 21; 3-2021; 1-9  
dc.identifier.issn
2405-8866  
dc.identifier.uri
http://hdl.handle.net/11336/155967  
dc.description.abstract
3D bioprinting is gaining attention as a biofabrication technique due to its potential to recreate the complex structure of native human tissue, combining high precision additive manufacturing, biocompatible inks, cells and biochemical factors. In this work, we evaluated the combination of covalent and ionic crosslinking networks as a strategy to modulate the properties of hydrogel inks and stripe-pattern printed structures to induce anisotropic mechanical properties. We found that for optimum printing, gelMA-alginate concentrations should be between 11 and 15% w/v and the polymer ratio and concentration modulate the rheological and compressive moduli of hydrogels. Furthermore, degradation and swelling rates are also adjustable, with some blends showing less than 20% degradation and negligible swelling over a 14 days period. Sheep adipose derived stem cells were included in three formulations and cell viability was >75% after bioprinting in all hydrogels. Stripe-patterned hydrogels were successfully printed using a dual printhead allowing us to modify the mechanical properties of 3D printed hydrogel scaffolds in each axis. The printed structure with gelatin (10% w/v) and gelMA-alginate (8% w/v - 7%w/v) hydrogel stripes showed a noticeable anisotropic mechanical behaviour. Thus, we demonstrated that chemical and structural factors could modulate the properties of printed biocompatible hydrogels, including anisotropic mechanical behaviour, with potential application in tissue engineering.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BIOINKS  
dc.subject
EXTRUSION PRINTING  
dc.subject
HYDROGELS  
dc.subject
THREE-DIMENSIONAL BIOPRINTING  
dc.subject
TISSUE ENGINEERING  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-12-03T19:48:21Z  
dc.journal.volume
21  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Aldana, Ana Agustina. University of Western Australia; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Valente, Filippo. University of Western Australia; Australia  
dc.description.fil
Fil: Dilley, Rodney. University of Western Australia; Australia  
dc.description.fil
Fil: Doyle, Barry. University of Edinburgh; Reino Unido. University of Western Australia; Australia  
dc.journal.title
Bioprinting  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bprint.2020.e00105  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405886620300324?via%3Dihub