Mostrar el registro sencillo del ítem
dc.contributor.author
Rosso, Paolo

dc.contributor.author
Cagnina, Leticia Cecilia

dc.contributor.other
Das, Dipankar
dc.contributor.other
Cambria, Erik
dc.contributor.other
Bandyopadhyay, Sivaji
dc.contributor.other
Feraco, Antonio
dc.date.available
2022-04-25T18:47:13Z
dc.date.issued
2017
dc.identifier.citation
Rosso, Paolo; Cagnina, Leticia Cecilia; Deception detection and opinion spam; Springer Nature Switzerland AG; 5; 2017; 155-171
dc.identifier.isbn
978-3-319-55392-4
dc.identifier.issn
2509-5706
dc.identifier.uri
http://hdl.handle.net/11336/155751
dc.description.abstract
In this chapter we first introduce the reader to the problem of deception detection in general, describing how lies may be detected automatically using different methods. Later we address the specific problem of deception detection in predatory communication. We make emphasis especially on those approaches using affective resources as categorical and psychometric information provided by natural language processing tools. Finally, we focus on the problem of opinion spam whose detection is very important for reliable opinion mining. In fact, nowadays a large number of opinion reviews are posted on theWeb. Such reviews are a very important source of information for customers and companies. Unfortunately, due to the business behind it, there is an increasing number of deceptive opinions on the Web. Those opinions are fictitious and have been deliberately written to sound authentic in order to deceive the consumers promoting a low quality product (positive deceptive opinions) or criticizing a potentially good quality one (negative deceptive opinions). Then, we summary some interesting approaches to detect spam opinion on the Web.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Nature Switzerland AG

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DECEPTION DETECTION
dc.subject
OPINION SPAM
dc.subject
LIE DETECTION
dc.subject
ONLINE SEXUAL PREDATORS DETECTION
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Deception detection and opinion spam
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-12-01T13:56:40Z
dc.identifier.eissn
2509-5714
dc.journal.volume
5
dc.journal.pagination
155-171
dc.journal.pais
Suiza

dc.journal.ciudad
Cham
dc.description.fil
Fil: Rosso, Paolo. Universidad Politécnica de Valencia; España
dc.description.fil
Fil: Cagnina, Leticia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-55394-8_8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-55394-8_8
dc.conicet.paginas
196
dc.source.titulo
A practical guide to sentiment analysis
Archivos asociados