Mostrar el registro sencillo del ítem

dc.contributor.author
Piantanida, Pablo  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.other
Rodrigues, Miguel R. D.  
dc.date.available
2022-04-25T12:40:44Z  
dc.date.issued
2020  
dc.identifier.citation
Piantanida, Pablo; Rey Vega, Leonardo Javier; Information Bottleneck and Representation Learning; Cambridge University Press; 2020; 330-358  
dc.identifier.isbn
9781108616799  
dc.identifier.uri
http://hdl.handle.net/11336/155667  
dc.description.abstract
A grand challenge in representation learning is the development of computational algorithms that learn the different explanatory factors of variation behind high-dimensional data. Representation models (usually referred to as encoders) are often  determined for optimizing performance on training data when the real objective is to generalize well to other (unseen) data. The first part of this chapter  is devoted to provide an overview of and introduction to fundamental concepts in statistical learning theory and the Information Bottleneck principle. It serves as a mathematical basis for the technical results given in the second part, in which an upper bound to the generalization gap corresponding to the cross-entropy risk is given. When this penalty term times a suitable multiplier and the cross entropy empirical risk are minimized jointly, the problem is equivalent to optimizing the Information Bottleneck objective with respect to the empirical data distribution. This result provides an interesting connection between mutual information and generalization, and helps to explain why noise injection during the training phase can improve the generalization ability of encoder models and enforce invariances in the resulting representations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Cambridge University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LEARNING  
dc.subject
INFORMATION  
dc.subject
RATE-DISTORTION  
dc.subject
GENERALIZATION  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Information Bottleneck and Representation Learning  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-09-07T14:55:58Z  
dc.journal.pagination
330-358  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Piantanida, Pablo. No especifíca;  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/books/informationtheoretic-methods-in-data-science/BC0340683CDB63CCFF73A41FE5E53E4C  
dc.conicet.paginas
565  
dc.source.titulo
Information-Theoretic Methods in Data Science