Mostrar el registro sencillo del ítem
dc.contributor.author
Waldner, François
dc.contributor.author
Bellemans, Nicolas
dc.contributor.author
Hochman, Zvi
dc.contributor.author
Newby, Terence
dc.contributor.author
de Abelleyra, Diego
dc.contributor.author
Verón, Santiago Ramón
dc.contributor.author
Bartalev, Sergey
dc.contributor.author
Lavreniuk, Mykola
dc.contributor.author
Kussul, Nataliia
dc.contributor.author
Maire, Guerric Le
dc.contributor.author
Simoes, Margareth
dc.contributor.author
Skakun, Sergii
dc.contributor.author
Defourny, Pierre
dc.date.available
2022-04-20T16:05:45Z
dc.date.issued
2019-08
dc.identifier.citation
Waldner, François; Bellemans, Nicolas; Hochman, Zvi; Newby, Terence; de Abelleyra, Diego; et al.; Roadside collection of training data for cropland mapping is viable when environmental and management gradients are surveyed; Elsevier; International Journal of Applied Earth Observation and Geoinformation; 80; 8-2019; 82-93
dc.identifier.issn
1569-8432
dc.identifier.uri
http://hdl.handle.net/11336/155422
dc.description.abstract
Cropland maps derived from satellite imagery have become a common source of information to estimate food production, support land use policies, and measure the environmental impacts of agriculture. Cropland classification models are typically calibrated with data collected from roadside surveys which enable the sampling of large areas at a relatively low cost. However, there is a risk of providing biased data as environmental and management gradients may not be fully captured from road networks, thereby violating the assumption of representativeness of calibration data. Despite being widely adopted, the potential biases of roadside sampling have so far not been thoroughly addressed. In this study, we looked for evidence of these biases by comparing three sampling strategies: Random sampling, Roadside sampling, and Transect sampling ? a spatially constrained variant of Roadside sampling. In these three strategies, non-cropland data are randomly distributed as they can be photo-interpreted. Based on reference maps at 30 m in four study sites, we followed a Monte Carlo approach to generate multiple realizations of each sampling strategy for ten sample sizes. The effect of the sampling strategy was then assessed in terms of representativeness of the data set collected and accuracy of the resulting maps. Results showed that data sets obtained from Roadside sampling were significantly less representative than those obtained from Random sampling but the resulting maps were only marginally less accurate (2% difference). Transect sampling captured systematically less variability than Random or Roadside sampling which led to differences in accuracy as large as 15%. The effect of sample size on accuracy varied across sites but generally leveled off after reaching 3000 pixels. Augmenting the size of Transect samples improved the classification accuracy but not sufficiently to match the performance of the other sampling strategies. Finally, we found that Random and Roadside training sets with similar representativeness yield comparable accuracy. Therefore, we conclude that roadside sampling can be a viable source of training data for cropland mapping if the range of environmental and management gradients is surveyed. This underlines the importance of survey planning to identify those routes that capture most variability.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ACCURACY
dc.subject
AGRICULTURE
dc.subject
CLASSIFICATION
dc.subject
REPRESENTATIVENESS
dc.subject
SAMPLE SIZE
dc.subject
SAMPLING
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Roadside collection of training data for cropland mapping is viable when environmental and management gradients are surveyed
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-04-18T13:37:29Z
dc.identifier.eissn
1872-826X
dc.journal.volume
80
dc.journal.pagination
82-93
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Waldner, François. Université Catholique de Louvain; Bélgica. CSIRO Agriculture & Food; Australia
dc.description.fil
Fil: Bellemans, Nicolas. Université Catholique de Louvain; Bélgica
dc.description.fil
Fil: Hochman, Zvi. CSIRO Agriculture & Food; Australia
dc.description.fil
Fil: Newby, Terence. Agricultural Research Council; Sudáfrica
dc.description.fil
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
dc.description.fil
Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina
dc.description.fil
Fil: Bartalev, Sergey. Academia de Ciencias de Rusia; Rusia
dc.description.fil
Fil: Lavreniuk, Mykola. National Academy of Sciences; Ucrania. Space Research Institute; Ucrania
dc.description.fil
Fil: Kussul, Nataliia. National Academy of Sciences; Ucrania
dc.description.fil
Fil: Maire, Guerric Le. Universidade Estadual de Campinas; Brasil. Université Montpellier II; Francia. Institut de Recherche Pour Le Developpement; Francia. Centro Nacional de Pesquisa em Energia e Materiais; Brasil
dc.description.fil
Fil: Simoes, Margareth. Universidade do Estado de Rio do Janeiro; Brasil
dc.description.fil
Fil: Skakun, Sergii. University of Maryland; Estados Unidos
dc.description.fil
Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica
dc.journal.title
International Journal of Applied Earth Observation and Geoinformation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jag.2019.01.002
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/ark/https://www.sciencedirect.com/science/article/abs/pii/S0303243418307657
Archivos asociados