Artículo
Group reconstruction systems
Fecha de publicación:
09/2011
Editorial:
Int Linear Algebra Soc
Revista:
Electronic Journal Of Linear Algebra
ISSN:
1081-3810
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider classes of reconstruction systems (RS’s) for finite dimensional real or complex Hilbert spaces H, called group reconstruction systems (GRS’s), that are associated with representations of finite groups G. These GRS’s generalize frames with high degree of symmetry, such as harmonic or geometrically uniform ones. Their canonical dual and canonical Parseval are shown to be GRS’s. We establish simple conditions for one-erasure robustness. Projective GRS’s, that can be viewed as fusion frames, are also considered. We characterize the Gram matrix of a GRS in terms of block group matrices. Unitary equivalences and unitary symmetries of RS’s are studied. The relation between the irreducibility of the representation and the tightness of the GRS is established. Taking into account these results, we consider the construction of Parseval, projective and one-erasure robust GRS’s.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Morillas, Patricia Mariela; Group reconstruction systems; Int Linear Algebra Soc; Electronic Journal Of Linear Algebra; 22; 9-2011; 875-911
Compartir